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Outline

* What is machine learning?

* How can we use machine learning to improve weather and climate modelling?

* A couple of examples for the use of machine learning in weather and climate predictions.
* Machine learning and high-performance computing.

* What are challenges for the use of machine learning?

Peter.Dueben@ecmwf.int @PDueben




Let’'s start with definitions

Artificial intelligence (Al) is intelligence demonstrated by machines, in
contrast to the natural intelligence displayed by humans (Wikipedia)

Example: A self-driving car stops as it detects a cyclist crossing
Artificial intelligence

Machine learning (ML) is the scientific study of algorithms and statistical
models that computer systems use to perform a specific task without using
explicit instructions... (Wikipedia)

‘ Example: To learn to distinguish between a cyclist and other things from data

Machine learning

Deep

learning Deep learning is part of a broader family of machine learning methods

based on artificial neural networks (Wikipedia)
Example: The technique that is used to detect a cyclist in a picture




Deep learning and artificial neural networks as one example of
machine learning

The concept:

Take input and output samples from a large data set
Learn to predict outputs from inputs Hidden layers
Predict the output for unseen inputs

The key:
Neural networks can learn a complex task as a “black box” \ /
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And weather?
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Decision trees and random forrests

- Decisions fork in tree structures An example for ecPoint:
until a prediction is made. P— s pra
tree (detail not shown)
- “Random forest” methods are
training a multitude of decision lovell D CF>0.75
trees using a mean predictions
or the value with the most hits as vl 2 pre 2<TP <8 (mm) I T
a result. <16 | |<32
- Decision trees are often fast and | Level 3 2=k IS
accurate and they are able to
conserve some of the properties b 50 < CAPE < 500 (J/kg)
of the system.
.. ] Level 5 70<S,, < 275 (W/m?)
- Decision trees often require a lot
of memory (as they serve as an . R —— .

efficient look-up table).
Hewson and Pillosu 2020




Two families of machine learning

Classical Machine [earning
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Why is there a sudden hype about machine learning?

Deep learning is fairly new but machine learning has been used for weather
predictions for many years.

Machine learning is no niche application anymore because...

e ...of an explosion of supercomputing performance and data availability

...0f success stories of machine learning tools beating humans
(counting cars in pictures, translating text, playing Jeopardy, playing chess or Go...)

[

. Ceann TensorFlow
Keras

« ...of powerful software tools that make it easy for non-experts
to develop machine learning applications

...of breath-taking developments in the design of new machine learning tools

...artificial intelligence is a trillion $ market

Machine learning can learn the behaviour of extremely complex systems if
enough data is available.




Why would machine learning help in weather predictions?

Predictions of weather and climate are difficult:

* The Earth is huge, resolution is limited and we cannot represent
all important processes within model simulations

* The Earth System shows “chaotic” dynamics which makes it
difficult to predict the future based on equations

* All Earth System components (atmosphere, ocean, land surface,
cloud physics,...) are connected in a non-trivial way

* Some of the processes involved are not well understood
However, we have hundreds of petabytes of Earth System
observation and model data available

> There are many application areas for machine learning in
numerical weather predictions

» Machine learning also provides a number of
opportunities for high performance computing
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Can we replace conventional weather forecast systems by deep
learning?

We could base the entire model on neural networks and trash the conventional models.?
There are limitations for existing models and ECMWF provides access to >200 petabyte of data

A simple test configuration:

" We retrieve historical data (ERA5) for geopotential at 500 hPa (Z500) for the last decades
(>65,000 global data sets)

" We map the global data to a coarse two-dimensional grid (60x31)

We learn to predict the update of the field from one hour to the next using deep learning
Once we have learned the update, we can perform predictions into the future

No physical understanding is required! 0000000
000000

Dueben and Bauer GMD 2018



Can we replace conventional weather forecast systems by deep

Fdda)'m Jan.lar,l 2010 090 UTCech W VTY Friﬂa)' M Jamuay 311&] 00 UTC 500 I'IP'a Geapn'enlal
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Time evolution of Z500 for historic data and a neural network prediction.
Can you tell which one is the neural network?

» The neural network is picking up the dynamics nicely.
» Forecast errors are comparable if we compare like with like.
» |s this the future?

Unlikely...

» The simulations are unstable and it is unclear how to fix conservation properties.

> It is unknown how to increase complexity and how to fix feature interactions.
» There are only ~40 years of data available.

However, there is a lot of progress at the moment:
Scher and Messori GMD 2019; Weyn, Durran, and Caruana JAMES 2019; ...
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Dueben and Bauer GMD 2018



Can we replace conventional weather forecast systems by deep

However, machine learning models are very pronh'eimfpfiwg-?,asting applications that provide weather
predictions for a couple of hours lead time.

Here...

...conservation is not important as errors have no time to accumulate.

...Interactions between weather features are not important (more advection, less physics).
...only local predictions are required — more independent datasets are available for training.

Example: 1-hour predictions of precipitation by Google:

NOAA forecast: Ground truth: Machine learning solution:

HRRR 01/24/2018, 15:00:00 MRMS 01/24/2018, 15:58:00 Al for Weather 01/24/2018, 15:58:00

(RLECyLE RS |

Kingston 129!

Mountlake Kingston L
Tesnrace

Shaoreline Botheel |

)
{5 ] Kirkland Recdm

(F25)

= @ . Seattle Bellavue |

https://ai.googleblog.com/2020/01/using-machine-learning-to-nowcast.html and research of Jason Hickey et al.




Why is it hard to beat conventional weather forecast systems?

120°E

Top-of-the-atmosphere cloud brightness temperature [K] for satellite observations and a simulation of the global

atmosphere with 1.45 km resolution on the SUMMIT supercomputer at the Oak Ridge National Laboratory.
Dueben, Wedi, Saarinen and Zeman JSMJ 2020

Today, global weather forecast simulations have O(1,000,000,000) degrees-of-freedom, can represent many
details of the Earth System, and show a breath-taking level of complexity.

Earth System models are based on decades of model developments and process understanding. 5L n',n',' t



Why is it hard to beat conventional weather forecast systems?

Analysis Observations
Northern hemisphere Southern hemisphere Tropics Northern hemisphere Southern hemisphere Tropics
Level Forecast day Forecast day Forecast day Level Forecast day Forecast day Forecast day
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Symbol legend: for a given forecast step...

A 5P better than DP statistically significant with 99.7% confidence
/- SP better than DP statistically significant with 95% confidence

SP hetter than DP statistically significant with 68% confidence

no significant difference between DP and SP

SP worse than DP statistically significant with 68% confidence

/'SP worse than DP statistically significant with 95% confidence

¥ SP worse than DP statistically significant with 99.7% confidence

No

Dueben, Diamantakis, Lang, Saarinen, Sandu, Wedi, Wilhelmsson ECMWF Newsletter 2018

So...using machine learning for weather predictions is useless then?




Machine learning applications across the numerical weather
mhan W

Application areas for machine learning are spread over the entire workflow:

weather data monitoring, real-time quality control for observational data, anomaly interpretation, guided quality
assignment and decision making, data fusion from different sources, correction of observation error,

learn governing differential equations, non-linear bias correction, learn operational operators, define optical
properties of hydrometeors and aerosols, emulate conventional tools to improve efficiency,

emulate model components, develop improved parametrisation schemes, build better error models, learn the
underlying equations of motion, generate tangent linear or adjoint code from machine learning emulators,
real-time adjustments of forecast products, feature detection, uncertainty quantification, error corrections for
seasonal predictions, development of low-complexity models, bespoke products for business opportunities,
and many more...



Observations:
Detect the risk for the ignition of wild fires by lightnings

Confusion Matrix for Test data * Observations for 15 variables are used as inputs including
soil moisture, 2m temperature, soil type, vegetation cover,
relative humidity, and precipitation

600

No Ignition i * The rate of radiant heat output from the Global Fire
500 Assimilation System (GFAS) of CAMS (monitored by the
MODIS satellite) was used to generate a “truth”

True lahel

400« 12,000 data points were used for training

* Different machine learning tools (decision trees, random
forest and Ada Boost) are used to classify the cases into
“ignition” and “no-ignition”

Ignition
gnition L 555

L 200
& * The best classifier has an accuracy of 77 %

o
& N
a@ &
N
Predicted label

Ruth Coughlan, Francesca Di Giuseppe, Claudia Vitolo and the SMOS-E project




ata assimilation: Bias-correct the forecast model in 4DVar data

- Data-assimilation blends observafibns 4Rl l@ethQQ:ast model to
generate initial conditions for weather predictions

* During data-assimilation the model trajectory is “synchronised” with
observations for the same weather regimes

* Itis possible to learn model error when comparing the model with
(trustworthy) observations

Two approaches: ,,

* Learn model error within the 4DVar data-assimilation framework for -
so-called “weak-constraint 4D-Var”

* Learn model error from a direct comparison of the model trajectory
to observations or analysis increments using deep learning. This
can be done with a column-based approach or with three-
dimensional machine learning solutions

Benefit:

When the bias is learned, it can be used to:

* Correct for the bias during data-assimilation to improve initial
conditions

* Correct for the bias in forecast simulations to improve predictions
(discussed controversially)

e Understand model deficiencies k. M Otk BN B .
Patrick Laloyaux, Massimo Bonavita and Peter Dueben @ ECMWF + Thorsten Kurth and David Matthew Hall @ NVIDIA




Numerical weather forecasts: To precondition the linear solver

Linf Residual

* Linear solvers are important to build efficient semi-implicit time-stepping schemes for atmosphere and ocean models.
* However, the solvers are expensive.

* The solver efficiency depends critically on the preconditioner that is approximating the inverse of a large matrix.

Can we use machine learning for preconditioning, predict the inverse of the matrix and reduce the number of
iterations that are required for the solver?

Testbed: A global shallow water model at 5 degree resolution but with real-world topography.
Method: Neural networks that are trained from the model state and the tendencies of full timesteps.

Machine learning preconditioner: No preconditioner:
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It turns out that the approach (1) is working and cheap, (2) interpretable and (3) easy to implement

even if no preconditioner is present. Ackmann, Dueben, Smolarkieicz and Palmer



rocessing and dissemination: Improve ensemble predictions

t T BN CRPS W SSIM/MSE EEE Ground Truth
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Ensemble predictions are important but expensive.
Can we improve ensemble skill scores from a small number of ensemble members via deep learning?

* Use global fields of five ensemble members as inputs.

* Correct the ensemble scores of temperature at 850 hPa and Z500 hPa for a 2-day forecast towards a full 10

member ensemble forecast. Gronquist, Yao, Ben-Nun, Dryden, Dueben, Lavarini, Li, Hoefler https://arxiv.org/abs/2005.08748




Post-processing and dissemination: ecPoint to post-process rainfall predictions

* Use forecast data as inputs
* Train against worldwide rainfall observations

* Improve local rainfall predictions by accounting Probability (%) > 50mm /12h
for sub-grid variability and weather-dependent biases

* Use decision trees as machine learning tool

Dfn .,}fﬁ 'L‘% ’5% hfn E._fﬂ %fﬂ ﬁ,ﬁfjﬁ,%fjﬁ,{bfjﬁmfj'

RAW
J@’L,_/‘\N = a
D4 - T [p3 F o
a__® o
D4 D3 -
Example: Devastating floods in Crete on 25 February 2019 .'.-E' S0 oo )
Benefits: Earlier and more consistent signal with higher probabilities 24hr1pin ’ )

Timothy Hewson and Fatima Pillosu



An example of a “co-desighed” machine learning solution for

Weather and climate modelling: ~ W€ather|afngnhiiaaike:
Tools need to allow for scale interactions Neural network tools allow for encoding/decoding structures
.In'lﬂ
Climate variation ——j» Input Output
ENSO ———3» :'LH R i ,.,;
.Inﬂ Veds O \ eon - /
Seasonal cycles 4, ey \ / \ = Code T / \ /
\ ‘,'f '\\ / A - - "t \ f.f’ 'l.\ /
Intraseasonal (MO} / N\ / \
Month = \‘u. / L L T v/ ) HI
8 Planetary waves ——j» / \ N o, / \
10 ) ,,< Y Y (
- Week Tropical cyclones —j QQQF' / "‘\ / \ / \ /s \ Fi \ ,I’f \
s - / \ / \
3 ronts, squall lines ——j» "Eﬂ \ / / -~ T~ \ \ /
4 = o i #—— Cloud clusters J..f \ / \ e W, / \ / 1||l.ll
10 o ; ./ - ~< 1
E P w
= Hour Q‘ / o ol — \
= 4——— Thunderstorms - e
E df—— Tornadoes
= % J 5 J
1“2 . sf—— Thermals Y ¥
E— Min Encoder Decoder
K ©
-} W o Ll Source:
<ol - [ | | | | I | https://towardsdatascience.com
10° 10" 102 10* 10* 10° 10° 107 10°
Meters
Source: UCAR

Can we use encoder/decoder networks to represent scale interactions?




=processing and dissemination: Precipitation down-scaling

Y1 Y, Yo7Yog T1 T2 T97 T28
. e R . . N S N ==\ (28)
Output Layer: rain level = Output Layer: rain prob.
- D d
2o -0 ey (e Model name  RMSE
I Dual State ConvGRU
I [\ - —— @ —t IFS 3.627
! HCGRU 3.268
[ Conv GRU w/ FTCA ) :
A== =R o e
ConvGRU w/ FTCA {Encod T-NET 3.106
ncoder
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Skip connection |-» | \CLLLLLLD - rrrron (12
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Xy Az A Ay X106 X108 X110X7112

Problem: Learn to map precipitation predictions from ERAS reanalysis data at ~50 km resolution to E-OBS
local precipitation observations at ~10 km resolution over the UK.

Use case: Eventually, apply the tool to climate predictions to understand changes of local precipitation
pattern due to climate change.

Method: Use T-NET with a mixture of ConvGru layers to represent spatial-temporal scale interactions and a
novel Fused Temporal Cross Attention mechanism to improve time dependencies.

Rilwan A. Adewoyin, Ritabrata Dutta, Peter Watson, Peter Dueben, Yulan He in preparation




How to do multi-scale modelling on unstructured grids?

Pressure (hPa) CMAM level
Ll . Thermosphere
0.001
5
0.01 10

o1 ————— e15 Mesosphere

e il
LA
Ky R
o PR
17 B OTE S 1
HP e ‘ﬂ'ﬂfj “l'f
'.lf;fl} 7
" #atl]
T 10 Stratosphere
vy AT ATATANAY 5
T AT AN o o
100
Troposphere

Source: Willem Deconinck 1000 §

Source: Polavarapu et al. 2005

Longitude/latitude (easy but inefficient and un-isotropic) vs. reduce Gaussian cubic octahedral (unstructured) grid

Problem: Find a three-dimensional machine learning solution to that can work on unstructured grids.
Solution: ???

Maybe Geometric deep learning and Graph Neural Networks, see Master Thesis of Iciar Lloréns Jover @ EPFL




What about high performance computing?

Sustained performance

§ & 1 2  Individual processors will not be faster
© P § & T - Parallelisation / power consumption / hardware faults
S s o £ 5
R B2 2 3 2 ~ ~ _
F . * Hardware will be more heterogeneous
100 m tornados, —» CPUs/ GPUs /FPGAs / ASICs
shallow convection
1 km deep convection, . . .
surface drag * Machine learning has strong impact on hardware
S 10km sharp frontal gradients,
._g thunderstorms d@VElOpment
= 25km medium mountain ranges, — High floprate at low precision
A severe.storms
g 50 km tropical eyclones,
majorfloods /O will become a nightmare
100 km weather regimes,
fronts, squall lines
250 k baroclinic waves,
" synoptic scales °.o-l s ro-o i
> — - -
gh £ 5 s 8 8 ol 'l I
g ~ T & T CPU GPU FPGA ASIC

Peak performance

Adapted from Neumann, Dueben et al. Phil Trans A 2018 Source: venturebeat.com




Numerical weather forecasts: To emulate the radiation scheme

e Store input/output data pairs of the radiation schemes This is a very active area of research:
* Use this data to train a neural network Rasp, Pritchard, Gentine PNAS 2018

* Replace the radiation scheme by the neural network within the model  Brenowitz and Bretherton GRL 2018

Why would you do this?

A°E
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20 = = 20N20N et “?"“;;.,__
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B - \ Ly - N 0N
\j \ T wsi0s
\\‘ (\ 9)/ 20°820°8 \\"‘
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100°E

Surface downward solar radiation for the original scheme and the neural network emulator (based on a ResNet).

The approach is working and the neural network is ~10 times faster than the original scheme.

However, model results are still degraded.
Dueben, Hogan, Bauer @ECMWF and Progsch, Angerer @NVIDIA




Numerical weather forecasts: To emulate gravity wave drag

* Repeat the same approach for the gravity wave drag scheme of IFS i Error vs cost
e Start with non-orographic and continue with orographic wave drag e } I N
' i oo
. . - . X
Results for the non-orographic gravity wave drag are promising. ) i
Original scheme Difference i
: R ™ . TR W L eeeueernnrnnrnnenrnenns =
: : Error of existing : % =
scheme | =
|
| X
|
I 4
|
S S
104 10° 10° 7
Floating point operations |

T T T T T T T
0.035 0.028 0.021 0.014 0.007 0.007 0.014 0.021 0.028 0.035 0.035 0.028 0.021 0.014 0.007 0.007 0.014 0.021 0.028 0.035 0.035 0.028 0.021 0.014 0.007 0.007 0.014 0.021 0.028 0.035

There is also a nice relation between network size and accuracy.

However, it is still questionable whether computational performance of the Neural Nets is better when
compared to the conventional scheme.

Results are not as good for the orographic gravity wave drag scheme. Chantry, Dueben, Palmer




Can we use deep learning hardware for conventional models?

Machine learning accelerators are focussing on low numerical precision and high floprats.

Example: TensorCore accelerators on NVIDIA Volta GPUs are optimised for half-precision matrix-
matrix multiplications with single precision output.
— 7.8 TFlops for double precision vs. 125 TFlops for half precision

Can we use TensorCores within our models?

Relative cost for model components for a non-hydrostatic model at 1.45 km resolution:

B Physics

® Dynamics
Semi-implicit
Transforms

The Legendre transform is the most expensive kernel. It consists of a large number of standard matrix-
matrix multiplications.

If we can re-scale the input and output fields, we can use half precision arithmetic.



Half precision Legendre Transformations

Northern extratropics (20N-90N) Tropics (20S-20N) Southern extratropics (90S-20S)
= double P
4.0 == half-trans25
i == lensor_core /l,
W
=
o
(0]
=
©
(]
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£
g
(1)
o
L=
o
o
o
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
Forecast lead time (days) Forecast lead time (days) Forecast lead time (days)

Root-mean-square error for geopotential height at 500 hPa at 9 km resolution averaged over multiple start dates.
Hatfield, Chantry, Dueben, Palmer Best Paper Award PASC2019

The simulations are using an emulator to reduce precision (Dawson and Dueben GMD 2017) and more thorough
diagnostics are needed.



Scientific challenges for machine learning in numerical weather
predictions

There is no fundamental reason not to use a black box within weather and climate
models but there are unanswered questions.

* Can we use our knowledge about the Earth System to improve machine learning tools?

* Can we diagnose physical knowledge from the machine learning tools?

* Can we remove errors from neural networks and secure conservation laws?

* Can we guarantee reproducibility?

* Can we find the optimal hyper-parameters?

* Can we efficiently scale machine learning tools to high performance computing applications?
* Can we interface machine learning tools with conventional models?

* Can we design good training data (short time steps and high resolution, labelled datasets)?
* Can we explore the full phase space (all weather regimes) during training?

Many scientists are working on these challenges as we speak.




My personal vision of the way forward...

Machine Learning

Idealised equations: To study known differential equations to learn how
to derive blueprints for neural network architectures.

Uncertainty quantification: To study the representation of variability and
the correction of systematic errors.

Scalable solutions: To learn how to scale neural networks to millions of
inputs for 3D fields on the sphere.

Benchmark problems: To build benchmark problems similar to ImageNet
(see WeatherBench in Rasp, Dueben, Scher, Weyn, Mouatadid and
Thureey 2020)

We need to focus on useful tools that can serve as beacons.
This will require machine learning solutions that are customised to

weather and climate science and a “co-designed” approach between
domain and machine learning science.



Some room for interactions with machine learning efforts at

EC%IM?A Workshop on Machine Learning for Earth System Observation and Prediction at ECMWF 5-8
October 2020. More information is here.

We have also started a special seminar series on Machine Learning that is broadcasted.

ECMWEF is developing the European Weather Cloud in collaboration with EUMETSAT.

Our MAELSTROM EuroHPC proposal was successful which will allow us to develop
customised machine learning solutions for weather and climate models.

We are hiring soon.




Conclusions

* There are a large number of application areas throughout the prediction workflow in weather and
climate modelling for which machine learning could really make a difference.

* The weather and climate community is still only at the beginning to explore the potential of
machine learning (and in particular deep learning).

* Machine learning will have a significant impact on future high-performance computing hardware
and therefore also on conventional weather and climate models.

* There are challenges for the application of black-box machine learning solutions within weather
and climate models that need to be addressed.

* There is still a lot of work to be done regarding the development of customised machine learning
solutions for weather and climate predictions which will require “co-designed” solutions.

Many thanks! Peter.Dueben@ecmwf.int @PDueben


https://www.ecmwf.int/en/learning/workshops/ecmwf-esa-workshop-machine-learning-earth-system-observation-and-prediction
https://www.ecmwf.int/en/learning/workshops/machine-learning-seminar-series
https://www.europeanweather.cloud/

The strength of a common goal
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