

Global storm and ocean eddy resolving coupled climate simulations: DYAMOND2

Max-Planck-Institut für Meteorologie

Daniel Klocke, Bjorn Stevens, Cathy Hohenegger, Claudia Stephan, Martin Bergemann, Rene Redler, Florian Ziemen

רב			

ICON-80km

ICON-2.5km

Himawari

FGOALS-G2

IPSL-CM5A-LR

Stevens and Bony, 2013

Advantage: resolving vertical energy transport

• In the tropics, the dominant mode of energy transport is in the vertical. • The scale is determined by the depth of the tropical troposphere (15-20km) • Kilometer-scale models can represent those transient dynamics

Stevens et al., 2020

Advantage: lower boundary conditions

,tradtional' climate model : 1394 m

Storm-resolving climate model : 4018 m

Mt Blanc: 4810 m

Hohenegger and Klocke, 2020

DYAMOND: the DYnamics of the Atmospheric general circulation Modeled **On Non-hydrostatic Domains**

- First inter-comparison of global storm resolving models (<5km grid spacing)
- Never two models did the same experiment before
- Some of the participating models were never applied to these scales
- DKRZ and ESiWACE provided support and space for data storage (2 Pb)
- Oct 2017 idea formulated
- Nov 2017 drafted protocol
- Simple protocol in terms of configuration and output requirements
- After one year most models had submitted the simulation
- 2019 Overview paper published (Stevens et al., 2019)
- Groups decided to repeat the exercise for a winter months

- Start on 1.8.2016, no parametrization for convection, simulate 40 days and 40 nights

Participating models in DYAMOND

Name	Grid	# _{Mcol}	# _{lev}	# _µ	$\sqrt{A_{\max}}$	H _{top}	H _{spng}	СР	BL	FC
ARPEGE-NH	Kurihara	82	75	5	2.5 km	70 km	34 km	N	т	Yes
FV3	Cube	57	79	6	3.3 km	39 km	25 km	S	К	Yes
GEOS	Cube	57	132	5	3.3 km	80 km	75 km	F	К	Yes
ICON	lcoso	84	90	5	2.5 km	75 km	44 km	Ν	Т	Yes
IFS	Octo	26	137	5	4.8 km	80 km	65 km	S	К	Yes
MPAS	Voronoi	42	75	6	3.8 km	40 km	30 km	F	Т	Yes
NICAM	lcoso	42	78	5	3.5 km	50 km	25 km	Ν	К	No
SAM	La-Lo	43	74	5	4.3 km	37 km	22 km	Ν	S	No
UM	La-Lo	20	85	6	7.8 km	85 km	42 km	S	К	Yes

_	

Stevens et al., 2019

Mt Fuji: 3776 m

In different DYAMOND models: 3166 m 2311 m 2316 m

Reminder: None of the models was tuned Most were never applied on storm-resolving scales

Stevens et al., 2019

How do the small-scales impact the large scales?

Contours show the doldrums: Wind speed (<3 m/s), Wind direction variability (<70 % from prevailing direction)

80km parameterized convection

DYAMOND models have doldrums, coarsest model with convection parameterization less pronounced and precipitation remains focused to the east Atlantic

Resolution dependency

- Only resolution and time-step are varied in a model
- Precipitation only starts to changing at resolutions < 20 km
- Short-wave radiation changes most with resolution. This is related to (low) clouds

• Variables are ,converged' at 5 km resolution, if the DYAMOND ensemble is considered as the reference

Hohenegger et al., 2020

DYAMOND-winter (aka DYAMOND2)

- Repeat exercise, but in winter months (EUREC4A, MJO), starting 20. January 2020
- Add coupled models, if possible, to investigate coupling on the convective scale
- Take the next step towards global coupled storm- and ocean-eddy resolving climate models
- Contributions by other centers expected by the end of 2020

DYAMOND-winter: First results

Days since 20.01.2020

Prescribed SST

Coupled default

Coupled (increased ocean albedo) ECMWF operational analysis (forecast) **NWP-2.5km prescribed SST NWP-5km prescribed SST**

Net TOA radiation flux [W/m²]

CERES Satellite data

DYAMOND-winter: First results

Sea-surface temperature [K], tropical oceans [30°S - 30°N]

- 5 km resolution in atmosphere and ocean
- Too few tropical clouds
- Nearly one year of coupled integration with increased ocean albedo
- Simulation is warming, but not too badly with increased ocean albedo (about 1K too warm)

reased ocean albedo Icreased ocean albedo (about 1K too warm)

2020-02-29 23:30 UTC

2020-02-29 23:30 UTC

2020-01-20 00:00 UTC

- Global coupled storm and ocean-eddy resolving climate simulations are becoming possible and increasingly feasible. Even on todays computers
- They are a new and exciting tool (even simpler tool)
- They are here to stay and will help us to gain new insides and address old questions with new tools
- Linking to observation communities becomes easier
- Data is available to the community

Summary

רב			

Sea-surface temperature [K], tropical oceans [30°S - 30°N]

DYAMOND-winter: First results

Sea-surface temperature [K], tropical oceans [30°S - 30°N]

- 5 km resolution in atmosphere and ocean
- Too few tropical clouds
- Nearly one year of coupled integration with increased ocean albedo
- Simulation is warming, but not too badly with increased ocean albedo (about 1K too warm)

reased ocean albedo Icreased ocean albedo (about 1K too warm)

DYAMOND-winter: First results dpp0014 (prescribed SST) dpp0015 (default) dpp0016 (increased ocean albedo) **ECMWF** operational analysis (forecast) NPW-2.5km NWP-5.0km 04.12.2020 25.08.2020 Days since 20.01.2020

Days since 20.01.2020

2020-02-29 23:30 UTC

