
Introduction to containers and Docker
Summer School on Effective HPC for Climate and Weather
Alberto Madonna, CSCS
August 27, 2020

Table of Contents

1. Introduction to containers and Docker (30 min)
2. Tutorial / live demo (60 min)
 - Break -
3. Next part: containers on HPC with Sarus

▪ Slides and code available at https://github.com/eth-cscs/containers-hands-on
▪ Lab tutorial video: https://youtu.be/dv74sFb3cVc

■ Disclaimer: This material reflects only the author’s view and the EU-Commission
is not responsible for any use that may be made of the information it contains

Introduction to Containers and Docker 2

https://github.com/eth-cscs/containers-hands-on
https://youtu.be/dv74sFb3cVc

Containers

▪ Isolated environments to run applications/services
▪ Images include all software dependencies
▪ Prescriptive, portable, easy to build, quick to deploy

Introduction to Containers and Docker 3

Image credit: Docker Inc.

▪ Linux containers rely on abstraction features (namespaces1) provided by the kernel

▪ Different design decisions and use cases gave rise to several solutions:

Linux containers ecosystem

Introduction to Containers and Docker 4

LXC
Singularity

HPC focused

1 “Namespaces in operation, part 1: namespaces overview” at https://lwn.net/Articles/531114/

SARUS

https://lwn.net/Articles/531114/

Docker

▪ Extremely popular container implementation

▪ Easy to use authoring tools
▪ Container images are created from recipe-like files
▪ Images can be named, tagged and built on top of other images

▪ Cloud-based image distribution strategy
▪ Several remote registries available (e.g. Docker Hub)
▪ Client includes facilities to authenticate, push and pull images

Introduction to Containers and Docker 5

Docker workflow

Introduction to Containers and Docker 6

1. An image is created locally from a Dockerfile
2. Push (i.e. upload) the image to a remote registry

DockerHub is the public registry maintained by the Docker company
3. Pull (i.e. download) the image on a target machine and run the container

Key terms

▪ Image: standalone, executable package that includes everything needed to run
a piece of software (code, runtime libraries, configuration files). Provides the
filesystem and metadata (e.g. environment variables, initial working directory) for
a container.

▪ Container: a process isolated from the rest of the system through abstractions
created by the kernel. The level of isolation can be controlled, allowing access to
host resources. Its filesystem content comes from an image.
▪ Can be thought as the runtime instance of an image: what the image becomes in memory

when actually executed.

Introduction to Containers and Docker 7

So… how are containers useful?

▪ Containers give the possibility to create (scientific) applications that are:

1. Portable

2. Prescriptive

3. Easy to deploy

4. Easy to test

Introduction to Containers and Docker 8

Live demo!

Using NVIDIA GPUs in Docker

GPU-accelerated application

▪ Included/built in the image, along with its
runtime dependencies

▪ NVIDIA provides base images for CUDA,
featuring compilers, runtime and accelerated
libraries:
https://hub.docker.com/r/nvidia/cuda

▪ Quickest way to get a Dockerfile going:
FROM nvidia/cuda

10

GPU driver

▪ It is tied to the hardware: cannot be part of a
portable image!

▪ Has to be imported upon container creation

▪ NVIDIA Container Toolkit to the rescue!
https://github.com/NVIDIA/nvidia-docker

▪ Docker >= 19.03 has native support:
docker run --gpus all nvidia/cuda nvidia-smi

Introduction to Containers and Docker

https://hub.docker.com/r/nvidia/cuda
https://github.com/NVIDIA/nvidia-docker

Docker cheatsheet

Introduction to Containers and Docker 11

docker pull <user/image:tag>

docker run <image:tag> <command>

docker run –it <image:tag> bash

docker run <image:tag> mpiexec –n 2

docker images

docker build –t <user/image:tag> .

docker login

docker push <user/image:tag>

Further material & contact

▪ Slides and Lab material: https://github.com/eth-cscs/containers-hands-on

▪ Lab intro video: https://youtu.be/dv74sFb3cVc

▪ Official Docker documentation: https://docs.docker.com/

▪ Best practices for writing Dockerfiles:
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

▪ Contact: alberto.madonna@cscs.ch

12Introduction to Containers and Docker

https://github.com/eth-cscs/containers-hands-on
https://youtu.be/dv74sFb3cVc
https://docs.docker.com/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
mailto:alberto.madonna@cscs.ch

The ESiWACE1/2 projects have received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement

No 675191 and No 823988

Disclaimer: This material reflects only the author’s view and the EU-Commission is not responsible
for any use that may be made of the information it contains

13Introduction to Containers and Docker

Thank you for your attention.

