
Outline

9:00am

● Infrastructure hardware:  - 30 minutes -KC

○ Storage devices characteristics

○ Storage devices evolution

○ Importance of software in infrastructure

○ Resulting stack and standardization aspects

○ New applications
● Infrastructure software - 30 minutes - Sai

○ posix

○ mpi-io

○ netcdf

○ object

● Storage trend and possible futures 

○ Deep and multi-tier storage hierarchy

○ Technical challenges 

■ metadata, data policies, fault tolerance

■ perspective - Storage Class Memory

10:00am KC

● Introduction to Darshan - 30 minutes -

○ Why, Install, HOWTO

○ Darshan DXT 

10:30am virtual break

10:45am  - KC
● Hands-on session - 1H -

○ 4 differents code to analyse

12:00 wrap-up



I/O tracing and monitor possibilities

● I/O path consist of several layers
○ Different options to monitor each layer

●  Applications level tracing
○ Tools: Darshan, Scalatrace etc.

● File System instrumentation
○ Not always the same as application I/O, 

libraries may modify the I/O pattern
○ Tools: Lustre and GPFS diagnostics

● Block device instrumentation
○ I/O requests to the actual devices
○ Tools: Linux block tracing, etc.

Application

File System

Storage Devices

I/O libraries

Typical I/O stack



● I/O the access pattern in all layer impacts 
performance 

● Applications developers
○ Control the I/O request from the 

Application to the I/O libraries and the 
file system 

○ Can not control how file system will 
internally translate their I/O requests

■ However, the fadvice() to pass hints 
for access patterns

● File System developers / System Admins 
○ Control file system request to storage 

devices

Application

File System

Storage Devices

I/O libraries

Typical I/O stack

fadvise()

I/O stack tuning



Application level I/O monitoring with Darshan

● What is Darshan

○ Name means “sight” or “vision” in Sanskrit

○ Lightweight, scalable I/O characterization tool 

○ Transparently captures application I/O access pattern information

○ Open source library and runtime

■ Developed and maintained at Argonne National Laboratory



Key features

● Captures several I/O interfaces

○ POSIX I/O, MPI-IO, and limited HDF5 and PNetCDF

● Instrumentation on compile time or at run time 

● Compatible with popular compilers and MPI implementations

● File system agnostic

○ Can be used with any file system

● Does not impact application performance in measurable way

○ Use it on production runs

● No need for applications code modification



Components

● darshan-runtime

○ Used to capture I/O statistics while the application is running

○ Installed on an HPC system to instrument MPI applications

■ Installation steps vary depending on the platform

● darshan-util

○ Use to annayle Darshan log files

○ Installed on a workstation to analyze Darshan log files 

■ (log files themselves are portable)

○ Installation is generic for almost any unix-like platform



Compilation and Installation process
● System-wide (available to all users)
● User’s home directory (no root access required)

○ There is no difference in functionality

● Download source code from
○ https://www.mcs.anl.gov/research/projects/darshan/download/

● tar -zxvf darshan-$version.tar.gz
● Compile Darshan runtime, use the same compiler as your application

○ cd darshan-$version/darshan-runtime
○ ./configure CC=mpicc --prefix=$installation-dir

--with-log-path-by-env=DARSHAN_LOGPATH 
--with-jobid-env=NONE --with-mem-align=128

○ make && make install
● Compile Darshan util

○ cd darshan-$version/darshan-util
○ ./configure --prefix=$installation-dir
○ make && make install

https://www.mcs.anl.gov/research/projects/darshan/download/


How to use it
● The simplest method to use Darshan is to build a dynamic executable that is 

dynamically linked with the MPI library
○ To determine if your executable is dynamic or not:

■ ldd a.out
■ libmpi.so.1 => /$inst_path/libmpi.so.1 [ ... ]

● Set log path directory
○ export DARSHAN_LOGPATH=./

● Then prefix the MPI execution command with the Darshan library
○ LD_PRELOAD=$path/libdarshan.so mpirun -np 4 a.out

● Each job instrumented with Darshan produces a single log file
○ Application must call MPI_Finalize() to generate the log file

● Darshan command line utilities are used to analyze these log files
● Online doc:

○ https://www.mcs.anl.gov/research/projects/darshan/docs/darshan-runti
me.html

https://www.mcs.anl.gov/research/projects/darshan/docs/darshan-runtime.html
https://www.mcs.anl.gov/research/projects/darshan/docs/darshan-runtime.html


Log file analysis tools
● darshan-job-summary.pl

○ creates pdf file with graphs useful for initial analysis
○ packages needed: Perl, pdflatex, epstopdf, and gnuplot

● darshan-summary-per-file.sh
○ similar to above, but creates a separate pdf file for each file opened by 

the application
● darshan-parser

○ dumps all information into ascii (text) format

● Online documentation at
○ https://www.mcs.anl.gov/research/projects/darshan/docs/darshan-util.ht

ml

https://www.mcs.anl.gov/research/projects/darshan/docs/darshan-util.html
https://www.mcs.anl.gov/research/projects/darshan/docs/darshan-util.html


Darshan job summary example



Darshan job parser example

#<module><rank><record id> <counter>   <value><file name> <mount pt> <fs type>

POSIX -1 22..36 POSIX_OPENS 8 file  /home nfs4
POSIX -1 22..36 POSIX_FILENOS 0 file  /home nfs4
POSIX -1 22..36 POSIX_DUPS 0 file  /home nfs4
POSIX -1 22..36 POSIX_READS 16 file  /home nfs4
POSIX -1 22..36 POSIX_WRITES 16 file  /home nfs4
POSIX -1 22..36 POSIX_SEEKS 32 file  /home nfs4
POSIX -1 22..36 POSIX_STATS 8 file  /home nfs4
POSIX -1 22..36 POSIX_MMAPS -1 file  /home nfs4
POSIX -1 22..36 POSIX_FSYNCS 0 file  /home nfs4
POSIX -1 22..36 POSIX_MODE  436 file  /home nfs4
POSIX -1 22..36 POSIX_BYTES_READ 4194304 file  /home nfs4



Darshan eXtended Tracing (DXT) module

● “Advanced” Darshan to report every intercepted call
● Not on by default, to enable

○ export DXT_ENABLE_IO_TRACE=1
● I/O Traces appear as a time series
● Special tool for post process analysis 

○ darshan-dxt-parser
● Provide tools for applying different types of analyses to the logs. 
● Provides different levels of granularity

○ DXT_TRIGGER_CONF_PATH environment variable to notify DXT of the 
path of the configuration file

■ file triggers: trace files based on regex matching of file paths
■ rank triggers: trace files based on regex matching of ranks
■ dynamic triggers: trace files based on runtime analysis of I/O 

characteristics (e.g., frequent small or unaligned I/O accesses



darshan-dxt-parser example output

# ***************************************************
# DXT_POSIX module data
# ***************************************************

# DXT, file_id: 16457598720760448348, file_name: /tmp/test/testFile
# DXT, rank: 0, hostname: shane-thinkpad
# DXT, write_count: 4, read_count: 4
# DXT, mnt_pt: /, fs_type: ext4
# Module    Rank  Wt/Rd  Segment          Offset       Length    Start(s)      End(s)
 X_POSIX       0  write        0               0       262144      0.0029      0.0032
 X_POSIX       0  write        1          262144      262144      0.0032      0.0035
 X_POSIX       0  write        2          524288      262144      0.0035      0.0038
 X_POSIX       0  write        3          786432      262144      0.0038      0.0040
 X_POSIX       0   read        0               0       262144      0.0048      0.0048
 X_POSIX       0   read        1          262144      262144      0.0049      0.0049
 X_POSIX       0   read        2          524288      262144      0.0049      0.0050
 X_POSIX       0   read        3          786432      262144      0.0050      0.005



Other darshan tools

● darshan-convert: 

○ converts an existing log file to the newest log format

● darshan-diff: 

○ provides a text diff of two Darshan log files, comparing both job-level metadata and module 

data records between the files

● darshan-analyzer: 

○ walks an entire directory tree of Darshan log files and produces a summary of the types of 

access methods used in those log files

● dxt_analyzer: 

○ plots the read or write activity of a job using data obtained from Darshan’s DXT modules (if 

DXT is enabled)



Hands on tutorial

● Download virtual machine
○ https://rb.gy/n82oex

● Download sample applications
○  https://github.com/kchasapis/esiwace_demo_darshan

https://rb.gy/n82oex
https://github.com/kchasapis/esiwace_demo_darshan


Guidelines for optimizing I/O 

● Large request size
● Avoid single shared file for parallel file systems
● Sequential I/O performs always better 
● For MPI-I/O Collective I/O results in better performance
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