cfdm, cf-python & cf-plot: Python data tools for CF-netCDF

ESiWACE Summer School on Effective HPC for Climate and Weather: Storage → Input/Output and Middleware
25th August 2020

Sadie Bartholomew
NCAS & University of Reading
On behalf of the NCAS-CMS team working on CF
Acknowledging the international netCDF and CF community

NCAS work on CF is supported by: is-enes
Introduction & scope

• NetCDF files + CF Metadata Conventions = CF-netCDF
 • flexible self-describing storage for array-based geoscientific data
 • plus standardised metadata to facilitate comparison & processing
• From the netCDF to the CF-netCDF data model
• A suite of Python tools for working with CF-netCDF
 • cfdm, cf-python, cf-plot & cf-checker
 • built around the CF data model, so able to process any CF-compliant dataset e.g. read, write, modify, analyse, regrid & plot

There is a ~1 hour walk-through session next demonstrating use of the data tools. These slides (~30 mins) summarise the underlying concepts.
NetCDF in geoscience: recap

Network Common Data Form

- Binary file format (.nc) adopted currently as de-facto standard for exchange & storage of earth science data
 - + supporting set of software libraries with APIs in many languages
 - originally (& still actively) developed by UCAR’s Unidata project
 - netCDF-4/HDF5 backward compatible with “classic” netCDF-3

✔ self-describing (metadata categorises each data array)
✔ portable (machine independent)
✔ open source, actively maintained
✔ wide use by a diverse community
✔ very flexible (therefore...)
✘ ...requires interpretation

Recommended resource:
➔ UCAR netCDF homepage, including documentation, release & support details, a tutorial, FAQs & more: www.unidata.ucar.edu/software/netcdf/
The NetCDF data models: recap

- Adds groups & user-defined types to classic model

Classic (netCDF-3)

- 3 key elements:
 - dimensions
 - variables
 - attributes

Enhanced (netCDF-4)

Diagrams by UCAR Unidata: found at www.unidata.ucar.edu/software/netcdf/papers/nc4_conventions.html
CF Metadata Conventions
Climate & Forecast

- Intended for climate & forecast data (model, satellite, observational, etc.) for atmosphere, surface & ocean
- Metadata rules to provide a *definitive* description of:
 - what the data in each variable represents; &
 - the spatial & temporal properties of that data.
- Updated by established community consensus process

 ✔ reduces interpretation requirement on netCDF
 ✔ enables users of data from different sources to decide which quantities are comparable
 ✔ human- & machine-readable

Recommended resource:
➔ CF Conventions website, including the formal convention documents & tables, links to discussions, presentations, & more: cfconventions.org

National Centre for Atmospheric Science
Natural Environment Research Council

University of Reading

NCAS work on CF is supported by: is-enes

infrastructure for the European network for earth system modeling
Table lifted from CF 1.9 draft document, first appearing in paper (see †). First column added & items re-ordered by SB.

<table>
<thead>
<tr>
<th>Type</th>
<th>CF-netCDF element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension</td>
<td>Dimension</td>
<td>Independent axis of the domain</td>
</tr>
<tr>
<td>Variable</td>
<td>Data variable</td>
<td>Scientific data discretised within a domain</td>
</tr>
<tr>
<td></td>
<td>Coordinate variable</td>
<td>Unique coordinates for a single axis</td>
</tr>
<tr>
<td></td>
<td>Auxiliary coordinate variable</td>
<td>Additional or alternative coordinates for any axes</td>
</tr>
<tr>
<td></td>
<td>Scalar coordinate variable</td>
<td>Coordinate for an implied size one axis</td>
</tr>
<tr>
<td></td>
<td>Grid mapping variable</td>
<td>Horizontal coordinate system</td>
</tr>
<tr>
<td></td>
<td>Boundary variable</td>
<td>Cell vertices</td>
</tr>
<tr>
<td></td>
<td>Cell measure variable</td>
<td>Cell areas or volumes</td>
</tr>
<tr>
<td></td>
<td>Ancillary data variable</td>
<td>Metadata that depends on the domain</td>
</tr>
<tr>
<td>Attribute</td>
<td>Formula terms attribute</td>
<td>Vertical coordinate system</td>
</tr>
<tr>
<td></td>
<td>Feature type attribute</td>
<td>Characteristics of discrete sampling geometry</td>
</tr>
<tr>
<td></td>
<td>Cell methods attribute</td>
<td>Description of variation within cells</td>
</tr>
</tbody>
</table>

NCAS work on CF is supported by:
Correspondence to netCDF

Schematic courtesy of David Hassell: see paper referenced on later slide (†). Re-coloured by SB.
A data model for CF-netCDF

- Benefits of a formal, consistent model for CF-netCDF:
 - improve understanding of CF-netCDF by identifying distinct elements & inherent relationships
 - facilitate enhancements to the CF Conventions
 - improved software tools
 - CF-compliant data easier to represent in other file formats

Benefits of a formal, consistent model for CF-netCDF:

With no data model:

- Multiple applications using multiple interpretations

With a data model:

- One interpretation for every application

![Schematic courtesy of David Hassell](reference)

Schematic courtesy of David Hassell: see paper referenced on later slide (†). Re-coloured by SB.
Official data model

- Guaranteed to be up-to-date with the Conventions for every release (CF 1.6+)
- Is “necessary & sufficient”
 - minimal set of elements sufficient to account for all of CF...
 - …with no additional elements

For full detail on the model, see:
- CF Conventions 1.9 draft: cfconventions.org/cf-conventions/cf-conventions.html#appendix-CF-data-model
- dedicated paper (†) by Hassell et al.: doi.org/10.5194/gmd-10-4619-2017

Diagram courtesy of David Hassell: see paper referenced bottom right.
The full picture

- Encoding (netCDF) independent

Diagram courtesy of David Hassell: see paper referenced on previous slide (†).
Using CF-compliant netCDF

• Many excellent open-source tools exist for netCDF as listed in the links below, but not all recognising CF...
• ... including multiple Python libraries
• The official Python/NumPy interface to the netCDF C library is Unidata’s netcdf4-python library:
 • NCAS CF suite of tools discussed next use this as a dependency

- netcdf4-python: see unidata.github.io/netcdf4-python/netCDF4/index.html
- To find and/or read about tools that can be used with (CF-)netCDF datasets:
 ➔ Unidata’s near-exhaustive list, ‘Software for Manipulating or Displaying NetCDF Data’: www.unidata.ucar.edu/software/netcdf/software.html
 ➔ CF Conventions listing of ‘Software that “Understands” CF Data’: cfconventions.org/software.html
NCAS CF-netCDF Data Tools

- A small suite of compatible, complimentary tools
- All open-source (hosted on GitHub) & Python 3 based

<table>
<thead>
<tr>
<th>Library</th>
<th>Description & purpose</th>
<th>Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>cfdm</td>
<td>Reference implementation of the CF data model</td>
<td>For the most part, only that required to read and write datasets, and to create, modify and inspect field constructs in memory</td>
</tr>
<tr>
<td>cf-python</td>
<td>CF-compliant geoscientific data analysis library</td>
<td>Much higher-level than cfdm, e.g. statistical operations, collapses, subspacing, regridding</td>
</tr>
<tr>
<td>cf-plot</td>
<td>Set of Python functions for making the visualisations often used by geoscientists</td>
<td>That for plotting e.g. contour, vector and line plots from field constructs (or numpy arrays)</td>
</tr>
<tr>
<td>cf-checker</td>
<td>CF compliance checking utility</td>
<td>Checks the CF compliance of a netCDF file</td>
</tr>
</tbody>
</table>

There is not sufficient time to cover the cf-checker, so for more info, see:

- the code repository e.g. to install: github.com/cedadev/cf-checker
- the browser-based interface: pumatest.nerc.ac.uk/cgi-bin/cf-checker.pl
The field construct

- Central object in cfdm & cf-python is the field construct → a CF-netCDF data variable with all of its metadata.
- A field construct cfdm.Field or cf.Field consists of:
 - descriptive properties that apply to field construct as a whole (e.g. the standard name);
 - a data array; &
 - metadata constructs that describe the locations of each cell of the data array (the domain) → the eight other constructs of the data model i.e. classes in the UML diagrams on previous slides.

For more information, please see:
➔ field construct breakdown within the cfdm documentation: ncas-cms.github.io/cfdm/cf_data_model.html
cfdm Python library

- A reference implementation of the CF data model, hence a complete representation of CF!
- *Designed to be subclassed*, so that the creation of a new implementation of the CF data model, based on **cfdm**, is straightforward
- Includes a stand-alone core implementation, the **cfdm.core** package, that includes no functionality beyond that mandated by the CF data model

For more information, please see:
- The documentation, including installation information & an API reference: ncas-cms.github.io/cfdm/
cf-python library

- Builds upon cfdm to provide diverse geoscientific data analysis capability → cfdm with high-level functionality
- As a small sample, cf-python can:
 - read, inspect, & write field constructs from netCDF & CDL (& more);
 - modify & analyse field construct metadata & data;
 - perform statistical collapses on field constructs;
 - create subspaces of field constructs;
 - regrid field constructs (several interpolation methods supported);
 - combine field constructs arithmetically; &
 - read & process netCDF & CDL containing hierarchical groups.

For more information, please see:
➔ The documentation, including installation information & an API reference: ncas-cms.github.io/cf-python/
cf-plot Python library

- CF-aware geoscientific visualisation
- Generally uses cf-python to present the data & CF attributes for plotting (can also use numpy arrays)
 - contour plots
 - vectors plots
 - plots of trajectories
 - significance plots
 - & more...

For more information, see:
- The documentation, including installation information, a gallery of plots & a user guide: ajheaps.github.io/cf-plot/

Example contour plot with overlaid vectors created with cf-plot. Colourbar & axes labels omitted as it is just for illustration.
Summary

- NetCDF files compliant with the CF Metadata Conventions (CF-netCDF) enable *flexible self-describing storage* of array-oriented geoscientific data
- CF-netCDF has become *a community standard*
- Different data models of CF-netCDF are possible, but an *official* model exists & is up-to-date for all CF 1.6+
 - formal model is “necessary & sufficient” & netCDF-independent
- Numerous tools for working with netCDF exist, including in Python, but NCAS’s CF suite is built upon the official CF data model: CF compliance *at heart*
 - able to process any CF-compliant (or non-compliant) netCDF
 - read, write, inspect, modify, analyse, plot, check compliance & more

NCAS work on CF is supported by: is-enes
We now move onto a walk-through of the NCAS CF libraries in practice. But I welcome any questions about the concepts at this stage!

Thanks for listening (so far).

Any questions?

Quick links to useful related resources:
- UCAR netCDF homepage: www.unidata.ucar.edu/software/netcdf/
- CF-netCDF (Metadata) Conventions homepage: cfconventions.org
- cf-python documentation: ncas-cms.github.io/cf-python/
- cfdm documentation: ncas-cms.github.io/cfdm/
- cf-plot documentation: ajheaps.github.io/cf-plot/
- walk-through & lab materials: github.com/NCAS-CMS/cf-training