
Introduction to DSLs
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Simulation
● Levels

○ Maths

○ Discretisation

○ Algorithm

○ Implementation

● Schulthess, T. Programming revisited. Nature Phys 11, 369–373 (2015). https://doi.org/10.1038/nphys3294

Application scientist

Numericist

HPC expert

Abstract Description

Concrete Implementation
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https://doi.org/10.1038/nphys3294


Worked example: Computing a gradient
● Why? Frequently used in Weather and Climate models

● For example: tightly packed isobars (pressure gradient) means strong winds
● Wind acceleration is proportional to pressure gradient
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Maths level
 

https://www.youtube.com/watch?v=M0u9Qy3SERI
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https://www.youtube.com/watch?v=M0u9Qy3SERI


Discretisation level
● Choose finite elements, finite volume, finite difference
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https://www.youtube.com/watch?v=9WE4zKCLxW8

https://www.youtube.com/watch?v=9WE4zKCLxW8


Algorithm level
● Choose multigrid, order of the scheme, etc.
● Different ways to work out gradient
● Here we use a simple 1st order scheme
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Compare with calculus ...



Implementation level
● This is what is compiled and run
● Code taken from the ICON model
● 3D mesh
● Fortran

DO jk = slev, elev       
 DO je = i_startidx, i_endidx         
   grad_norm_psi_e(je,jk) = 
      (psi_c(iidx(je,2),jk)-psi_c(iidx(je,1),jk))/lhat(je)
 ENDDO
END DO
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Running fast/parallel

DO jk = slev, elev       

 DO je = i_startidx, i_endidx         

   grad_norm_psi_e(je,jk) = 

      (psi_c(iidx(je,2),jk)-psi_c(iidx(je,1),jk))/lhat(je)

 ENDDO

END DO• Original serial code
• (very) straight forward implementation
• "actual science" + mesh
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Running fast/parallel

DO jb = i_startblk, i_endblk

 CALL get_indices_e(ptr_patch, jb, i_startblk, i_endblk, &

                    i_startidx, i_endidx, rl_start, rl_end)

 DO jk = slev, elev       

   DO je = i_startidx, i_endidx         

     grad_norm_psi_e(je,jk,jb) =  &

       ( psi_c(iidx(je,jb,2),jk,iblk(je,jb,2)) -

         psi_c(iidx(je,jb,1),jk,iblk(je,jb,1)) ) 

       / ptr_patch%edges%lhat(je,jb)

   ENDDO

 END DO

END DO

• turns out that the mesh is too large for 
one machine and therefore runs slowly, 
so add blocks 
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Running fast/parallel

#ifdef _OMP

!$OMP PARALLEL

!$OMP DO PRIVATE(jb, i_startidx, i_endidx, je, jk)

#endif

DO jb = i_startblk, i_endblk

 CALL get_indices_e(ptr_patch, jb, i_startblk, i_endblk, &

                    i_startidx, i_endidx, rl_start, rl_end)

 DO jk = slev, elev       

   DO je = i_startidx, i_endidx         

     grad_norm_psi_e(je,jk,jb) =  &

       ( psi_c(iidx(je,jb,2),jk,iblk(je,jb,2)) -

         psi_c(iidx(je,jb,1),jk,iblk(je,jb,1)) ) 

       / ptr_patch%edges%lhat(je,jb)

   ENDDO

 END DO

END DO

#ifdef _OMP

!$OMP END DO NOWAIT

!$OMP END PARALLEL

#endif

• add directives to exploit multiple cores 
on shared memory machines
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Running fast/parallel

#ifdef _OMP

!$OMP ....

#else

!$ACC ....

#endif

DO jb = i_startblk, i_endblk

 CALL get_indices_e(ptr_patch, ...)

 #ifdef __LOOP_EXCHANGE

 DO je = i_startidx, i_endidx         

   DO jk = slev, elev           

 #else

   DO jk = slev, elev       

     DO je = i_startidx, i_endidx         

 #endif 

     grad_norm_psi_e(je,jk,jb) =  &

       ( psi_c(iidx(je,jb,2),jk,iblk(je,jb,2)) -

         psi_c(iidx(je,jb,1),jk,iblk(je,jb,1)) ) 

       / ptr_patch%edges%lhat(je,jb)

   ENDDO

 END DO

END DO

#ifdef _OMP

!$OMP ...

#else

!$ACC ...

#endif

• code also needs to target an 
architecture with a GPU accelerator ...

• ... which has a different optimal 
memory layout
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Running fast/parallel

#ifdef _OMP

!$OMP ....

#else

!$ACC ....

#endif

DO jb = i_startblk, i_endblk

 CALL get_indices_e(ptr_patch, ...)

 #ifdef __LOOP_EXCHANGE

 DO je = i_startidx, i_endidx         

   DO jk = slev, elev           

 #else

   DO jk = slev, elev       

     DO je = i_startidx, i_endidx         

 #endif 

     grad_norm_psi_e(je,jk,jb) =  &

       ( psi_c(iidx(je,jb,2),jk,iblk(je,jb,2)) -

         psi_c(iidx(je,jb,1),jk,iblk(je,jb,1)) ) 

       / ptr_patch%edges%lhat(je,jb)

   ENDDO

 END DO

END DO

#ifdef _OMP

!$OMP ...

#else

!$ACC ...

#endif
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Running fast/parallel

#ifdef _OMP

!$OMP ....

#else

!$ACC ....

#endif

DO jb = i_startblk, i_endblk

 CALL get_indices_e(ptr_patch, ...)

 #ifdef __LOOP_EXCHANGE

 DO je = i_startidx, i_endidx         

   DO jk = slev, elev           

 #else

   DO jk = slev, elev       

     DO je = i_startidx, i_endidx         

 #endif 

     grad_norm_psi_e(je,jk,jb) =  &

       ( psi_c(iidx(je,jb,2),jk,iblk(je,jb,2)) -

         psi_c(iidx(je,jb,1),jk,iblk(je,jb,1)) ) 

       / ptr_patch%edges%lhat(je,jb)

   ENDDO

 END DO

END DO

#ifdef _OMP

!$OMP ...

#else

!$ACC ...

#endif

What if
• Requirements change, e.g. it turns out 

that this gradient should have been 
approximated using a higher order 
stencil?

• A third (fourth...) architecture needs to 
be supported?

• The mesh library needs to be replaced?
• Loops should be fused together for 

greater performance on a particular 
architecture?

• A compiler has a bug that needs a 
workaround?
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Separation of Concerns
● Performance portable maintainable code is difficult to achieve

What can we do?

● Can we separate the specification/coding of the science from its optimisation?
● This would

○ allow the scientists to concentrate on developing the science
○ Allow HPC experts to concentrate on optimising the code

Domain-specific languages (DSLs) offer a way to do this ...
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Domain Specific Languages
● Languages tailored to a (very) specific purpose

○ as opposed to general purpose programming languages like C, C++, Java, Python...
● This definition is quite general and includes things like:

○ HTML for web pages
○ PostScript for documents
○ MATLAB for maths processing

● However, we focus on DSLs for High Performance Computing (HPC)
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Domain Specific Languages
● DSL Frameworks are becoming a more and more viable approach for device-specific 

code generation, often achieving performance numbers unatainable for general 
purpose compilers

● Since DSLs are, well, domain specific, they are very expressive for the domain they are 
tailored to
○ shorter code, better maintainability

● Some application domains for HPC using DSLs include
○ Image Processing (Halide)
○ Deep Learning (XLA)
○ Climate & Numerical Weather Prediction (Stella, Gridtools, dawn, PSyclone)
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Benefit of DSL vs coding
The DSL Idea

grad_norm_psi_e = 

reduce( psi_c,

              CELL > EDGE,

              [1/lhat, -1/lhat]

            )

!$OMP PARALLEL

!$OMP DO PRIVATE(jb, i_startidx, i_endidx, je, jk)

DO jb = i_startblk, i_endblk

 CALL get_indices_e(ptr_patch, ...)

 DO je = i_startidx, i_endidx         

   DO jk = slev, elev           

     grad_norm_psi_e(je,jk,jb) =  &

       ( psi_c(iidx(je,jb,2),jk,iblk(je,jb,2)) -

         psi_c(iidx(je,jb,1),jk,iblk(je,jb,1)) ) 

       / ptr_patch%edges%lhat(je,jb)

   ENDDO

 END DO

END DO

!$OMP END DO NOWAIT

!$OMP END PARALLEL

DSL 
compiler

OMP
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Benefit of DSL vs coding
The DSL Idea

grad_norm_psi_e = 

reduce( psi_c,

              CELL > EDGE,

              [1/lhat, -1/lhat]

            )

!$ACC PARALLEL &

!$ACC PRESENT(ptr_patch, iidx, iblk, pci_c, grad_...)

!$ACC LOOP GANG

DO jb = i_startblk, i_endblk

 CALL get_indices_e(ptr_patch, ...)

 DO jk = slev, elev  

   DO je = i_startidx, i_endidx                     

     grad_norm_psi_e(je,jk,jb) =  &

       ( psi_c(iidx(je,jb,2),jk,iblk(je,jb,2)) -

         psi_c(iidx(je,jb,1),jk,iblk(je,jb,1)) ) 

       / ptr_patch%edges%lhat(je,jb)

   ENDDO

 END DO

END DO

!$ACC END PARALLEL

!$ACC END DATA

DSL 
compiler

Open
ACC
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Benefit of DSL vs coding
The DSL Idea

grad_norm_psi_e = 

reduce( psi_c,

              CELL > EDGE,

              [1/lhat, -1/lhat]

            )

DSL 
compiler

C++
for(int k = 0 + 0; k < m_k_size; ++k) {

 for(auto const& loc : getEdges(LibTag{}, m_mesh)) {        

   for(auto inner_loc :

     grad_norm_psi_e(loc, k + 0) = reduce(

         LibTag{}, m_mesh, loc, (::dawn::float_type)0.0,

         std::vector<dawn::LocationType>

         {dawn::Edges, dawn::Cells},

         [&](auto& lhs, auto red_loc1, auto const& weight)                                               

         {  

           lhs += weight * psi_c(red_loc1, k + 0);            

           return lhs;

         },

         std::vector<::dawn::float_type>({-1.0 ,1.0});

   }

   grad_norm_psi_e(loc, k + 0) /= lhat_e(loc, k + 0)

 }

}
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Existing code & DSLs

● Although DSLs are very powerful, an application must be re-written in order to use them
● Applications in the weather/climate domain are large and under continuous development
● DSLs are relatively new and untested in this domain

○ Concerns over longevity of necessary tool chains
● To stop development on existing code and re-develop from scratch is expensive (time and effort)
● Community has a lot of skill and knowledge in existing coding approaches (Fortran)

Very attractive to be able to translate existing code into a DSL or use existing code in a DSL rather than re-write:

● Support science that cannot be specified in the DSL language
● Transition to high level DSLs by evolution not revolution
● Support code generation and translation

Need to regain lost information
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Evolution rather than Revolution



Levels of abstraction

Maths

Discretisation

Algorithm

Implementation

Language-specific

Dawn

PSycloneDSL

Not 
DSL
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DSL

Fortran 
Front End

Fortran 
Back End

OpenCL 
Back End

KOKKOS 
Back End
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Summary
● Modelling required expertise in multiple disciplines (co-design)
● These disciplines work at different levels of abstraction
● Mixing science and performance can produce complex code
● Good to separate these concerns
● DSLs offer a way to do this
● DSLs support working at a high level of abstraction
● Higher level of abstraction allows a greater choice of implementation -> more 

performance
● Different DSLs can work at different levels of abstraction
● DSLs might support revolution and/or evolution
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Next
● Break
● Dawn intro
● PSyclone intro
● Tutorial
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