
Introduction to DSLs

ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823988

Simulation
● Levels

○ Maths

○ Discretisation

○ Algorithm

○ Implementation

● Schulthess, T. Programming revisited. Nature Phys 11, 369–373 (2015). https://doi.org/10.1038/nphys3294

Application scientist

Numericist

HPC expert

Abstract Description

Concrete Implementation

ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823988

https://doi.org/10.1038/nphys3294

Worked example: Computing a gradient
● Why? Frequently used in Weather and Climate models

● For example: tightly packed isobars (pressure gradient) means strong winds
● Wind acceleration is proportional to pressure gradient

ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823988

Maths level

https://www.youtube.com/watch?v=M0u9Qy3SERI

ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823988

https://www.youtube.com/watch?v=M0u9Qy3SERI

Discretisation level
● Choose finite elements, finite volume, finite difference

ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823988

https://www.youtube.com/watch?v=9WE4zKCLxW8

https://www.youtube.com/watch?v=9WE4zKCLxW8

Algorithm level
● Choose multigrid, order of the scheme, etc.
● Different ways to work out gradient
● Here we use a simple 1st order scheme

ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823988

Compare with calculus ...

Implementation level
● This is what is compiled and run
● Code taken from the ICON model
● 3D mesh
● Fortran

DO jk = slev, elev
 DO je = i_startidx, i_endidx
 grad_norm_psi_e(je,jk) =
 (psi_c(iidx(je,2),jk)-psi_c(iidx(je,1),jk))/lhat(je)
 ENDDO
END DO

ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823988

Running fast/parallel

DO jk = slev, elev

 DO je = i_startidx, i_endidx

 grad_norm_psi_e(je,jk) =

 (psi_c(iidx(je,2),jk)-psi_c(iidx(je,1),jk))/lhat(je)

 ENDDO

END DO• Original serial code
• (very) straight forward implementation
• "actual science" + mesh

ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823988

Running fast/parallel

DO jb = i_startblk, i_endblk

 CALL get_indices_e(ptr_patch, jb, i_startblk, i_endblk, &

 i_startidx, i_endidx, rl_start, rl_end)

 DO jk = slev, elev

 DO je = i_startidx, i_endidx

 grad_norm_psi_e(je,jk,jb) = &

 (psi_c(iidx(je,jb,2),jk,iblk(je,jb,2)) -

 psi_c(iidx(je,jb,1),jk,iblk(je,jb,1)))

 / ptr_patch%edges%lhat(je,jb)

 ENDDO

 END DO

END DO

• turns out that the mesh is too large for
one machine and therefore runs slowly,
so add blocks

ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823988

Running fast/parallel

#ifdef _OMP

!$OMP PARALLEL

!$OMP DO PRIVATE(jb, i_startidx, i_endidx, je, jk)

#endif

DO jb = i_startblk, i_endblk

 CALL get_indices_e(ptr_patch, jb, i_startblk, i_endblk, &

 i_startidx, i_endidx, rl_start, rl_end)

 DO jk = slev, elev

 DO je = i_startidx, i_endidx

 grad_norm_psi_e(je,jk,jb) = &

 (psi_c(iidx(je,jb,2),jk,iblk(je,jb,2)) -

 psi_c(iidx(je,jb,1),jk,iblk(je,jb,1)))

 / ptr_patch%edges%lhat(je,jb)

 ENDDO

 END DO

END DO

#ifdef _OMP

!$OMP END DO NOWAIT

!$OMP END PARALLEL

#endif

• add directives to exploit multiple cores
on shared memory machines

ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823988

Running fast/parallel

#ifdef _OMP

!$OMP

#else

!$ACC

#endif

DO jb = i_startblk, i_endblk

 CALL get_indices_e(ptr_patch, ...)

 #ifdef __LOOP_EXCHANGE

 DO je = i_startidx, i_endidx

 DO jk = slev, elev

 #else

 DO jk = slev, elev

 DO je = i_startidx, i_endidx

 #endif

 grad_norm_psi_e(je,jk,jb) = &

 (psi_c(iidx(je,jb,2),jk,iblk(je,jb,2)) -

 psi_c(iidx(je,jb,1),jk,iblk(je,jb,1)))

 / ptr_patch%edges%lhat(je,jb)

 ENDDO

 END DO

END DO

#ifdef _OMP

!$OMP ...

#else

!$ACC ...

#endif

• code also needs to target an
architecture with a GPU accelerator ...

• ... which has a different optimal
memory layout

ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823988

Running fast/parallel

#ifdef _OMP

!$OMP

#else

!$ACC

#endif

DO jb = i_startblk, i_endblk

 CALL get_indices_e(ptr_patch, ...)

 #ifdef __LOOP_EXCHANGE

 DO je = i_startidx, i_endidx

 DO jk = slev, elev

 #else

 DO jk = slev, elev

 DO je = i_startidx, i_endidx

 #endif

 grad_norm_psi_e(je,jk,jb) = &

 (psi_c(iidx(je,jb,2),jk,iblk(je,jb,2)) -

 psi_c(iidx(je,jb,1),jk,iblk(je,jb,1)))

 / ptr_patch%edges%lhat(je,jb)

 ENDDO

 END DO

END DO

#ifdef _OMP

!$OMP ...

#else

!$ACC ...

#endif

ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823988

Running fast/parallel

#ifdef _OMP

!$OMP

#else

!$ACC

#endif

DO jb = i_startblk, i_endblk

 CALL get_indices_e(ptr_patch, ...)

 #ifdef __LOOP_EXCHANGE

 DO je = i_startidx, i_endidx

 DO jk = slev, elev

 #else

 DO jk = slev, elev

 DO je = i_startidx, i_endidx

 #endif

 grad_norm_psi_e(je,jk,jb) = &

 (psi_c(iidx(je,jb,2),jk,iblk(je,jb,2)) -

 psi_c(iidx(je,jb,1),jk,iblk(je,jb,1)))

 / ptr_patch%edges%lhat(je,jb)

 ENDDO

 END DO

END DO

#ifdef _OMP

!$OMP ...

#else

!$ACC ...

#endif

What if
• Requirements change, e.g. it turns out

that this gradient should have been
approximated using a higher order
stencil?

• A third (fourth...) architecture needs to
be supported?

• The mesh library needs to be replaced?
• Loops should be fused together for

greater performance on a particular
architecture?

• A compiler has a bug that needs a
workaround?

ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823988

Separation of Concerns
● Performance portable maintainable code is difficult to achieve

What can we do?

● Can we separate the specification/coding of the science from its optimisation?
● This would

○ allow the scientists to concentrate on developing the science
○ Allow HPC experts to concentrate on optimising the code

Domain-specific languages (DSLs) offer a way to do this ...

ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823988

Domain Specific Languages
● Languages tailored to a (very) specific purpose

○ as opposed to general purpose programming languages like C, C++, Java, Python...
● This definition is quite general and includes things like:

○ HTML for web pages
○ PostScript for documents
○ MATLAB for maths processing

● However, we focus on DSLs for High Performance Computing (HPC)

ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823988

Domain Specific Languages
● DSL Frameworks are becoming a more and more viable approach for device-specific

code generation, often achieving performance numbers unatainable for general
purpose compilers

● Since DSLs are, well, domain specific, they are very expressive for the domain they are
tailored to
○ shorter code, better maintainability

● Some application domains for HPC using DSLs include
○ Image Processing (Halide)
○ Deep Learning (XLA)
○ Climate & Numerical Weather Prediction (Stella, Gridtools, dawn, PSyclone)

ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823988

Benefit of DSL vs coding
The DSL Idea

grad_norm_psi_e =

reduce(psi_c,

 CELL > EDGE,

 [1/lhat, -1/lhat]

)

!$OMP PARALLEL

!$OMP DO PRIVATE(jb, i_startidx, i_endidx, je, jk)

DO jb = i_startblk, i_endblk

 CALL get_indices_e(ptr_patch, ...)

 DO je = i_startidx, i_endidx

 DO jk = slev, elev

 grad_norm_psi_e(je,jk,jb) = &

 (psi_c(iidx(je,jb,2),jk,iblk(je,jb,2)) -

 psi_c(iidx(je,jb,1),jk,iblk(je,jb,1)))

 / ptr_patch%edges%lhat(je,jb)

 ENDDO

 END DO

END DO

!$OMP END DO NOWAIT

!$OMP END PARALLEL

DSL
compiler

OMP

ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823988

Benefit of DSL vs coding
The DSL Idea

grad_norm_psi_e =

reduce(psi_c,

 CELL > EDGE,

 [1/lhat, -1/lhat]

)

!$ACC PARALLEL &

!$ACC PRESENT(ptr_patch, iidx, iblk, pci_c, grad_...)

!$ACC LOOP GANG

DO jb = i_startblk, i_endblk

 CALL get_indices_e(ptr_patch, ...)

 DO jk = slev, elev

 DO je = i_startidx, i_endidx

 grad_norm_psi_e(je,jk,jb) = &

 (psi_c(iidx(je,jb,2),jk,iblk(je,jb,2)) -

 psi_c(iidx(je,jb,1),jk,iblk(je,jb,1)))

 / ptr_patch%edges%lhat(je,jb)

 ENDDO

 END DO

END DO

!$ACC END PARALLEL

!$ACC END DATA

DSL
compiler

Open
ACC

ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823988

Benefit of DSL vs coding
The DSL Idea

grad_norm_psi_e =

reduce(psi_c,

 CELL > EDGE,

 [1/lhat, -1/lhat]

)

DSL
compiler

C++
for(int k = 0 + 0; k < m_k_size; ++k) {

 for(auto const& loc : getEdges(LibTag{}, m_mesh)) {

 for(auto inner_loc :

 grad_norm_psi_e(loc, k + 0) = reduce(

 LibTag{}, m_mesh, loc, (::dawn::float_type)0.0,

 std::vector<dawn::LocationType>

 {dawn::Edges, dawn::Cells},

 [&](auto& lhs, auto red_loc1, auto const& weight)

 {

 lhs += weight * psi_c(red_loc1, k + 0);

 return lhs;

 },

 std::vector<::dawn::float_type>({-1.0 ,1.0});

 }

 grad_norm_psi_e(loc, k + 0) /= lhat_e(loc, k + 0)

 }

}

ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823988

Existing code & DSLs

● Although DSLs are very powerful, an application must be re-written in order to use them
● Applications in the weather/climate domain are large and under continuous development
● DSLs are relatively new and untested in this domain

○ Concerns over longevity of necessary tool chains
● To stop development on existing code and re-develop from scratch is expensive (time and effort)
● Community has a lot of skill and knowledge in existing coding approaches (Fortran)

Very attractive to be able to translate existing code into a DSL or use existing code in a DSL rather than re-write:

● Support science that cannot be specified in the DSL language
● Transition to high level DSLs by evolution not revolution
● Support code generation and translation

Need to regain lost information

ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823988

Evolution rather than Revolution

Levels of abstraction

Maths

Discretisation

Algorithm

Implementation

Language-specific

Dawn

PSycloneDSL

Not
DSL

ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823988

DSL

Fortran
Front End

Fortran
Back End

OpenCL
Back End

KOKKOS
Back End

ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823988

Summary
● Modelling required expertise in multiple disciplines (co-design)
● These disciplines work at different levels of abstraction
● Mixing science and performance can produce complex code
● Good to separate these concerns
● DSLs offer a way to do this
● DSLs support working at a high level of abstraction
● Higher level of abstraction allows a greater choice of implementation -> more

performance
● Different DSLs can work at different levels of abstraction
● DSLs might support revolution and/or evolution

ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823988

Next
● Break
● Dawn intro
● PSyclone intro
● Tutorial

ESiWACE2 has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823988

