
Adrian Jackson, Iakovos Panourgias

(EPCC, The Unversity of Edinburgh)

Ramon Nou, Alberto Miranda

(BSC)

Persistent Memory for I/O

@adrianjhpc

a.jackson@epcc.ed.ac.uk

http://www.nextgenio.eu

I/O Performance – Large writes

• Plot of run times of individual I/O regions for checkpoint I/O

• Same code executed for all runs

• Checkpoint I/O less frequent but much quicker

• Much higher data volumes

New Memory Hierarchies

• High bandwidth, on processor memory
• Large, high bandwidth cache
• Latency cost for individual access may be an

issue

• Main memory
• DRAM
• Costly in terms of energy, potential for lower

latencies than high bandwidth memory

• Byte-addressable Persistent Memory
(B-APM)

• High capacity, ultra fast storage
• Low energy (when at rest) but still slower

than DRAM
• Available through same memory controller

as main memory, programs have access to
memory address space

Memory

Storage

Cache

HBW Memory

Slow Storage

Cache

NVRAM

Fast Storage

Memory

HBW Memory

Slow Storage

Cache

NVRAM

HBW Memory

Cache

NVRAM

NVRAM / B-APM

Optane DCPMM

Performance - STREAM

Mode Min BW (GB/s) Median BW (GB/s) Max BW (GB/s)

App Direct (DRAM) 142 150 155

App Direct (DCPMM) 32 32 32

Memory mode 144 146 147

Memory mode 12 12 12

https://github.com/adrianjhpc/DistributedStream.git

STREAM_TYPE *a, *b, *c;
pmemaddr = pmem_map_file(path, array_length,

PMEM_FILE_CREATE|PMEM_FILE_EXCL,
0666, &mapped_len, &is_pmem)

a = pmemaddr;
b = pmemaddr + (*array_size+OFFSET)*BytesPerWord;
c = pmemaddr + (*array_size+OFFSET)*BytesPerWord*2;

#pragma omp parallel for
for (j=0; j<*array_size; j++){

a[j] = b[j]+scalar*c[j];
}
pmem_persist(a, *array_size*BytesPerWord);

I/O Performance

Move from I/O to Data

• Biggest potential for B-APM (to me) is
removing the I/O interface

• Removing file (and block) operations

IOR - Data block sizes

Multi-level memory exploitation

• Read-only data in DRAM

Calculation time was 14.269555 seconds

Overall run time was 16.397619 seconds

address = (int **) malloc(nx*sizeof(int *) + nx*ny*sizeof(int));
fuzzy = int2D(nx, ny, address);

pmemaddr1 = pmem_map_file(filename, array_size,PMEM_FILE_CREATE|PMEM_FILE_EXCL,
0666, &mapped_len1, &is_pmem)

fuzzy = int2D(nx, ny, pmemaddr1);

int **int2D(int nx, int ny, int **idata){
int i;
idata[0] = (int *) (idata + nx);

for(i=1; i < nx; i++){
idata[i] = idata[i-1] + ny;

}

return idata;
}

• Read-only data in B-APM

Calculation time was 14.250425 seconds

Overall run time was 16.800046 seconds

NUMA regions

Performance - STREAM

unsigned long get_processor_and_core(int *socket, int *core){

unsigned long a,d,c;

__asm__ volatile("rdtscp" : "=a" (a), "=d" (d), "=c" (c));

*socket = (c & 0xFFF000)>>12;

*core = c & 0xFFF;

return ((unsigned long)a) | (((unsigned long)d) << 32);;

}

strcpy(path,"/mnt/pmem_fsdax");

sprintf(path+strlen(path), "%d", socket/2);

sprintf(path+strlen(path), "/");

Performance - workflows

Synthetic workflow runtime

(Lustre vs NVM)

Component Lustre NVM

Producer 96 secs 64 secs

Consumer 74 secs 30 secs

Total 170 secs 94 secs

Performance impact on HPCG

due to concurrent data staging

Component Runtime

HPCG (no staging) 122 secs

HPCG + stage in 142 secs

HPCG + stage out 137 secs

44.70% faster

Sequential data producer/consumer

Working set: 100GiB data

2 configurations:

write/read to Lustre, separate nodes

write/read to NVM, same node

High Performance Conjugate

Gradient (HPCG) Benchmark

Profile: CPU and memory-bound

Targets: Single node

12.29% slower

Performance – workflows

Performance benefits of data staging on OpenFOAM workflow

16 nodes, 768 MPI procs 20 nodes, 960 MPI procs

Stage Lustre NVM Benefit Lustre NVM Benefit

decomposition 1191 secs 1105 secs – 1841 secs 1453 secs –

data staging – 32 secs – – 330 secs –

solver 123 secs 66 secs 46% faster 664 secs 78 secs 88% faster

Total 1314 secs 1203 secs 8% faster 2505 secs 1861 secs 25% faster

OpenFOAM simulation: low-Reynolds number

laminar turbulent transition modeling

Input: mesh with ≈43M points

Stages: linear decomposition,

parallel solver

768 MPI processes, 16 nodes

2 configurations:

① read/write to Lustre

② stage in, read/write on NVM, stage out

Performance - workflows

1 node

4 processes

4 files

20 nodes

80 processes

80 files

1 node

4 processes

80 files

Exploiting distributed storage

Optimising data usage

• Reducing data movement
• Time and associated energy cost for moving data

too and from external parallel filesystems

• Move compute to data

• Considering full scientific workflow
• Data pre-/post-processing

• Multi-physics/multi-application simulations

• Combined simulation and analytics

• Enable scaling I/O performance with compute
nodes

Systemware architecture

SLURM extensions

New options for srun, sbatch, salloc:

• SLURM tracks all workflow jobs; updating
the prior- and post-dependencies and making
sure they run in order

• If a workflow job fails; then all subsequent jobs
fail (are deleted). Currently running jobs are not terminated

Option for job definition Description

#SBATCH --workflow-start Indicate that job starts a

workflow

#SBATCH --workflow-prior-dependency=JOBID+ Make job depend on

completion of prior jobs

#SBATCH –-workflow-end Indicate that job finalizes

workflow

#SBATCH -–workflow-same-nodes Indicate the job should use

the same nodes assigned to

its prior dependent job

New options for data management:

• SLURM captures the dependencies and initiates
the appropriate NORNS tasks to fulfill the
transfers requested by users

SLURM extensions

Option for job definition Description

#NORNS stage_in
origin destination mapping

Stage in data from ORIGIN dataspace

into DESTINATION according to a

predefined MAPPING

#NORNS stage_out
origin destination mapping

Stage out data from ORIGIN dataspace

into DESTINATION according to a

predefined MAPPING

#NORNS persist
[store|delete|share|unshare]
location user

Allow jobs to store data in node-local

storage so that it can be shared among

workflow jobs

Example: Definition of a workflow

[bsc15455@mn1.bsc.es: ~] $
sbatch --nodes=2 \

--workflow-start prepro1.sh

Job ID: 5656

[bsc15455@mn1.bsc.es: ~] $
sbatch --nodes=8 \

--workflow-start prepro2.sh

Job ID: 5666

[bsc15455@mn1.bsc.es: ~] $
sbatch \

--nodes=64 \
--workflow-prior-dependency=5656,5666 \
simulation.sh

Job ID: 5743

[bsc15455@mn1.bsc.es: ~] $
sbatch --nodes=1 \

--workflow-prior-dependency=5743 \
--workflow-end postpro.sh

Job ID: 5788

ID: 5656

nodes: 2

prepro1.sh

ID: 5666

nodes: 8

prepro2.sh

ID: 5743

nodes: 64

prepro1.sh

ID: 5788

nodes: 1

prepro1.sh

Parallel File System

input

data

input

data

data

mapping

Example: Resource mappings

1 ### INPUT/OUTPUT FILE MAPPINGS ###

2 [‘lustre://${HOME}/file/dir/checkpoint%[0-9]+%.out’];

3 0;pmdk0://;0,5

4 1;pmdk0://;1,6

5 2;pmdk0://;2,7

6 3;pmdk0://;3,8

7 4;pmdk0://;4,9,11

[bsc15455@ngio-login1: ~] $ dsh –f nodes.list –c ls /mnt/pmdk0

ngio-cn00: checkpoint0.out checkpoint5.out

ngio-cn01: checkpoint1.out checkpoint6.out

ngio-cn02: checkpoint2.out checkpoint7.out

ngio-cn03: checkpoint3.out checkpoint8.out

ngio-cn04: checkpoint4.out checkpoint9.out checkpoint11.out

mapping.dat

Challenges of compute local
storage

• No single namespace

• Enabling workflow jobs to run on same set of
nodes

• Moving data on and off node local storage

• Ensuring data is only
accessible by
authorised users

• Understanding
application
performance

Using distributed storage

• New usage models
• Resident data sets

• Sharing preloaded data across a range of jobs

• Data analytic workflows

• How to control access/authorisation/security/etc….?

• Workflows
• Producer-consumer model

• Remove filesystem from intermediate stages

Using distributed storage

• Workflows
• How to enable different sized applications?

• How to schedule these jobs fairly?

• How to enable secure access?

Using distributed storage

• Without changing applications
• Large memory space/in-memory database etc…
• Local filesystem

• Users manage data themselves

• No global data access/namespace, large number of files

• Still require global filesystem for persistence

NGIO Data

Scheduler

(NORNS) and

Slurm

integration

Using distributed storage

• Without changing applications
• Filesystem buffer

• Pre-load data into NVRAM from filesystem

• Use NVRAM for I/O and write data back to filesystem at
the end

• Requires systemware to preload and postmove data

• Uses filesystem as namespace manager

NGIO Data

Scheduler

(NORNS) and

Slurm

integration

Using distributed storage

• Without changing applications
• Global filesystem

• Requires functionality to create and tear down global
filesystems for individual jobs

• Requires filesystem that works across nodes
• Requires functionality to preload and postmove filesystems
• Need to be able to support multiple filesystems across

system

NGIO GekkoFS

Using distributed storage

• With changes to applications
• Object store

• Needs same functionality as global filesystem

• Removes need for POSIX, or POSIX-like functionality

Intel DAOS and

BSC dataClay

Performance – IO-500

• Ten nodes

• Twenty nodes
[RESULT] BW phase 1 ior_easy_write 45.689 GB/s : time 326.58 seconds
[RESULT] IOPS phase 1 mdtest_easy_write 398.313 kiops : time 348.71 seconds
[RESULT] BW phase 2 ior_hard_write 3.827 GB/s : time 310.10 seconds
[RESULT] IOPS phase 2 mdtest_hard_write 48.792 kiops : time 315.29 seconds
[RESULT] IOPS phase 3 find 2645.500 kiops : time 57.71 seconds
[RESULT] BW phase 3 ior_easy_read 48.452 GB/s : time 307.96 seconds
[RESULT] IOPS phase 4 mdtest_easy_stat 1040.100 kiops : time 133.82 seconds
[RESULT] BW phase 4 ior_hard_read 13.438 GB/s : time 88.32 seconds
[RESULT] IOPS phase 5 mdtest_hard_stat 1063.020 kiops : time 16.73 seconds
[RESULT] IOPS phase 6 mdtest_easy_delete 592.988 kiops : time 239.39 seconds
[RESULT] IOPS phase 7 mdtest_hard_read 239.824 kiops : time 66.02 seconds
[RESULT] IOPS phase 8 mdtest_hard_delete 41.083 kiops : time 374.58 seconds
[SCORE] Bandwidth 18.3687 GB/s : IOPS 367.42 kiops : TOTAL 82.1525

[RESULT] BW phase 1 ior_easy_write 22.566 GB/s : time 334.77 seconds
[RESULT] IOPS phase 1 mdtest_easy_write 293.677 kiops : time 365.91 seconds
[RESULT] BW phase 2 ior_hard_write 3.063 GB/s : time 309.71 seconds
[RESULT] IOPS phase 2 mdtest_hard_write 34.665 kiops : time 318.85 seconds
[RESULT] IOPS phase 3 find 1245.860 kiops : time 94.33 seconds
[RESULT] BW phase 3 ior_easy_read 21.625 GB/s : time 349.33 seconds
[RESULT] IOPS phase 4 mdtest_easy_stat 758.889 kiops : time 143.15 seconds
[RESULT] BW phase 4 ior_hard_read 9.804 GB/s : time 96.78 seconds
[RESULT] IOPS phase 5 mdtest_hard_stat 768.476 kiops : time 17.48 seconds
[RESULT] IOPS phase 6 mdtest_easy_delete 441.682 kiops : time 248.24 seconds
[RESULT] IOPS phase 7 mdtest_hard_read 159.821 kiops : time 71.86 seconds
[RESULT] IOPS phase 8 mdtest_hard_delete 37.775 kiops : time 293.52 seconds
[SCORE] Bandwidth 11.0028 GB/s : IOPS 258.151 kiops : TOTAL 53.2953

NGIO Prototype

• 34 node cluster with
3TB of Intel
DCPMM per node

• 2 CPUS per node,
each with 1.5TB of
DCPMM and 96GB
of DRAM

• External Lustre
filesystem

Summary

• Enabling new technologies with HPC systems
requires systemware support

• Transparently handling data for applications
requires integration with job schedulers and
data storage targets

• Tools are essential to allow exploitation of new
hardware without requiring code change

• Tools very useful to evaluate design decision
and approaches for applications and systems

• In-node B-APM is potentially very powerful for
performance, but will require some changes to
use efficiently (either at the systemware level
or the application level)

