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I/O Performance – Large writes

• Plot of run times of individual I/O regions for checkpoint I/O 

• Same code executed for all runs

• Checkpoint I/O less frequent but much quicker

• Much higher data volumes 



New Memory Hierarchies 

• High bandwidth, on processor memory
• Large, high bandwidth cache
• Latency cost for individual access may be an 

issue

• Main memory
• DRAM
• Costly in terms of energy, potential for lower 

latencies than high bandwidth memory

• Byte-addressable Persistent Memory   
(B-APM)

• High capacity, ultra fast storage
• Low energy (when at rest) but still slower 

than DRAM
• Available through same memory controller 

as main memory, programs have access to 
memory address space
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NVRAM / B-APM



Optane DCPMM



Performance - STREAM

Mode Min BW (GB/s) Median BW (GB/s) Max BW (GB/s)

App Direct (DRAM) 142 150 155

App Direct (DCPMM) 32 32 32

Memory mode 144 146 147

Memory mode 12 12 12

https://github.com/adrianjhpc/DistributedStream.git

STREAM_TYPE     *a, *b, *c;
pmemaddr = pmem_map_file(path, array_length,

PMEM_FILE_CREATE|PMEM_FILE_EXCL,
0666, &mapped_len, &is_pmem)

a = pmemaddr;
b = pmemaddr + (*array_size+OFFSET)*BytesPerWord;
c = pmemaddr + (*array_size+OFFSET)*BytesPerWord*2;

#pragma omp parallel for
for (j=0; j<*array_size; j++){

a[j] = b[j]+scalar*c[j];
}
pmem_persist(a, *array_size*BytesPerWord);



I/O Performance



Move from I/O to Data

• Biggest potential for B-APM (to me) is 
removing the I/O interface

• Removing file (and block) operations



IOR - Data block sizes 



Multi-level memory exploitation

• Read-only data in DRAM

Calculation time was 14.269555 seconds

Overall run time was 16.397619 seconds

address = (int **) malloc(nx*sizeof(int *) + nx*ny*sizeof(int));
fuzzy = int2D(nx, ny, address);

pmemaddr1 = pmem_map_file(filename, array_size,PMEM_FILE_CREATE|PMEM_FILE_EXCL,
0666, &mapped_len1, &is_pmem)

fuzzy =  int2D(nx, ny, pmemaddr1);

int **int2D(int nx, int ny, int **idata){
int i;
idata[0] = (int *) (idata + nx);

for(i=1; i < nx; i++){
idata[i] = idata[i-1] + ny;

}

return idata;
}

• Read-only data in B-APM

Calculation time was 14.250425 seconds

Overall run time was 16.800046 seconds



NUMA regions



Performance - STREAM

unsigned long get_processor_and_core(int *socket, int *core){

unsigned long a,d,c;

__asm__ volatile("rdtscp" : "=a" (a), "=d" (d), "=c" (c));

*socket = (c & 0xFFF000)>>12;

*core = c & 0xFFF;

return ((unsigned long)a) | (((unsigned long)d) << 32);;

}

strcpy(path,"/mnt/pmem_fsdax");

sprintf(path+strlen(path), "%d", socket/2);

sprintf(path+strlen(path), "/");



Performance - workflows

Synthetic workflow runtime

(Lustre vs NVM)

Component Lustre NVM

Producer 96 secs 64 secs

Consumer 74 secs 30 secs

Total 170 secs 94 secs

Performance impact on HPCG 

due to concurrent data staging

Component Runtime

HPCG (no staging) 122 secs

HPCG + stage in 142 secs

HPCG + stage out 137 secs

44.70% faster

Sequential data producer/consumer

Working set: 100GiB data

2 configurations:

write/read to Lustre, separate nodes

write/read to NVM, same node

High Performance Conjugate 

Gradient (HPCG) Benchmark

Profile: CPU and memory-bound

Targets: Single node

12.29% slower



Performance – workflows

Performance benefits of data staging on OpenFOAM workflow

16 nodes, 768 MPI procs 20 nodes, 960 MPI procs

Stage Lustre NVM Benefit Lustre NVM Benefit

decomposition 1191 secs 1105 secs – 1841 secs 1453 secs –

data staging – 32 secs – – 330 secs –

solver 123 secs 66 secs 46% faster 664 secs 78 secs 88% faster

Total 1314 secs 1203 secs 8% faster 2505 secs 1861 secs 25% faster

OpenFOAM simulation: low-Reynolds number 

laminar turbulent transition modeling

Input: mesh with ≈43M points

Stages: linear decomposition, 

parallel solver

768 MPI processes, 16 nodes

2 configurations:

① read/write to Lustre

② stage in, read/write on NVM, stage out



Performance - workflows

1 node

4 processes

4 files

20 nodes

80 processes

80 files

1 node

4 processes

80 files



Exploiting distributed storage



Optimising data usage

• Reducing data movement
• Time and associated energy cost for moving data 

too and from external parallel filesystems

• Move compute to data

• Considering full scientific workflow
• Data pre-/post-processing

• Multi-physics/multi-application simulations

• Combined simulation and analytics

• Enable scaling I/O performance with compute 
nodes



Systemware architecture



SLURM extensions

New options for srun, sbatch, salloc:

• SLURM tracks all workflow jobs; updating 
the prior- and post-dependencies and making 
sure they run in order

• If a workflow job fails; then all subsequent jobs 
fail (are deleted). Currently running jobs are not terminated

Option for job definition Description

#SBATCH --workflow-start Indicate that job starts a 

workflow

#SBATCH --workflow-prior-dependency=JOBID+ Make job depend on 

completion of prior jobs

#SBATCH –-workflow-end Indicate that job finalizes 

workflow

#SBATCH -–workflow-same-nodes Indicate the job should use 

the same nodes assigned to 

its prior dependent job



New options for data management:

• SLURM captures the dependencies and initiates
the appropriate NORNS tasks to fulfill the 
transfers requested by users

SLURM extensions

Option for job definition Description

#NORNS stage_in
origin destination mapping

Stage in data from ORIGIN dataspace 

into DESTINATION according to a 

predefined MAPPING

#NORNS stage_out
origin destination mapping

Stage out data from ORIGIN dataspace 

into DESTINATION according to a 

predefined MAPPING

#NORNS persist
[store|delete|share|unshare]
location user

Allow jobs to store data in node-local 

storage so that it can be shared among 

workflow jobs



Example: Definition of a workflow

[ bsc15455@mn1.bsc.es: ~ ] $
sbatch --nodes=2 \

--workflow-start prepro1.sh

Job ID: 5656

[ bsc15455@mn1.bsc.es: ~ ] $
sbatch --nodes=8 \

--workflow-start prepro2.sh

Job ID: 5666

[ bsc15455@mn1.bsc.es: ~ ] $
sbatch \

--nodes=64 \
--workflow-prior-dependency=5656,5666 \
simulation.sh

Job ID: 5743

[ bsc15455@mn1.bsc.es: ~ ] $
sbatch --nodes=1 \

--workflow-prior-dependency=5743 \
--workflow-end postpro.sh

Job ID: 5788

ID: 5656

nodes: 2

prepro1.sh

ID: 5666

nodes: 8

prepro2.sh

ID: 5743

nodes: 64

prepro1.sh

ID: 5788

nodes: 1

prepro1.sh

Parallel File System

input 

data

input 

data

data 

mapping



Example: Resource mappings

1 ### INPUT/OUTPUT FILE MAPPINGS ###

2 [‘lustre://${HOME}/file/dir/checkpoint%[0-9]+%.out’];

3 0;pmdk0://;0,5

4 1;pmdk0://;1,6

5 2;pmdk0://;2,7

6 3;pmdk0://;3,8

7 4;pmdk0://;4,9,11

[ bsc15455@ngio-login1: ~ ] $ dsh –f nodes.list –c ls /mnt/pmdk0

ngio-cn00: checkpoint0.out  checkpoint5.out

ngio-cn01: checkpoint1.out  checkpoint6.out

ngio-cn02: checkpoint2.out  checkpoint7.out

ngio-cn03: checkpoint3.out  checkpoint8.out

ngio-cn04: checkpoint4.out  checkpoint9.out  checkpoint11.out

mapping.dat 



Challenges of compute local 
storage

• No single namespace

• Enabling workflow jobs to run on same set of 
nodes

• Moving data on and off node local storage

• Ensuring data is only 
accessible by 
authorised users

• Understanding 
application 
performance



Using distributed storage

• New usage models
• Resident data sets

• Sharing preloaded data across a range of jobs

• Data analytic workflows

• How to control access/authorisation/security/etc….?

• Workflows
• Producer-consumer model

• Remove filesystem from intermediate stages



Using distributed storage

• Workflows
• How to enable different sized applications?

• How to schedule these jobs fairly?

• How to enable secure access?



Using distributed storage

• Without changing applications
• Large memory space/in-memory database etc…
• Local filesystem

• Users manage data themselves

• No global data access/namespace, large number of files

• Still require global filesystem for persistence

NGIO Data 

Scheduler 

(NORNS) and 

Slurm

integration



Using distributed storage

• Without changing applications
• Filesystem buffer

• Pre-load data into NVRAM from filesystem

• Use NVRAM for I/O and write data back to filesystem at 
the end

• Requires systemware to preload and postmove data

• Uses filesystem as namespace manager

NGIO Data 

Scheduler 

(NORNS) and 

Slurm

integration



Using distributed storage

• Without changing applications
• Global filesystem

• Requires functionality to create and tear down global 
filesystems for individual jobs

• Requires filesystem that works across nodes
• Requires functionality to preload and postmove filesystems
• Need to be able to support multiple filesystems across 

system

NGIO GekkoFS



Using distributed storage

• With changes to applications
• Object store

• Needs same functionality as global filesystem

• Removes need for POSIX, or POSIX-like functionality

Intel DAOS and 

BSC dataClay



Performance – IO-500

• Ten nodes

• Twenty nodes
[RESULT] BW   phase 1            ior_easy_write 45.689 GB/s : time 326.58 seconds
[RESULT] IOPS phase 1         mdtest_easy_write 398.313 kiops : time 348.71 seconds
[RESULT] BW   phase 2            ior_hard_write 3.827 GB/s : time 310.10 seconds
[RESULT] IOPS phase 2         mdtest_hard_write 48.792 kiops : time 315.29 seconds
[RESULT] IOPS phase 3                      find             2645.500 kiops : time  57.71 seconds
[RESULT] BW   phase 3             ior_easy_read 48.452 GB/s : time 307.96 seconds
[RESULT] IOPS phase 4          mdtest_easy_stat 1040.100 kiops : time 133.82 seconds
[RESULT] BW   phase 4             ior_hard_read 13.438 GB/s : time  88.32 seconds
[RESULT] IOPS phase 5          mdtest_hard_stat 1063.020 kiops : time  16.73 seconds
[RESULT] IOPS phase 6        mdtest_easy_delete 592.988 kiops : time 239.39 seconds
[RESULT] IOPS phase 7          mdtest_hard_read 239.824 kiops : time  66.02 seconds
[RESULT] IOPS phase 8        mdtest_hard_delete 41.083 kiops : time 374.58 seconds
[SCORE] Bandwidth 18.3687 GB/s : IOPS 367.42 kiops : TOTAL 82.1525

[RESULT] BW   phase 1            ior_easy_write 22.566 GB/s : time 334.77 seconds
[RESULT] IOPS phase 1         mdtest_easy_write 293.677 kiops : time 365.91 seconds
[RESULT] BW   phase 2            ior_hard_write 3.063 GB/s : time 309.71 seconds
[RESULT] IOPS phase 2         mdtest_hard_write 34.665 kiops : time 318.85 seconds
[RESULT] IOPS phase 3                      find             1245.860 kiops : time  94.33 seconds
[RESULT] BW   phase 3             ior_easy_read 21.625 GB/s : time 349.33 seconds
[RESULT] IOPS phase 4          mdtest_easy_stat 758.889 kiops : time 143.15 seconds
[RESULT] BW   phase 4             ior_hard_read 9.804 GB/s : time  96.78 seconds
[RESULT] IOPS phase 5          mdtest_hard_stat 768.476 kiops : time  17.48 seconds
[RESULT] IOPS phase 6        mdtest_easy_delete 441.682 kiops : time 248.24 seconds
[RESULT] IOPS phase 7          mdtest_hard_read 159.821 kiops : time  71.86 seconds
[RESULT] IOPS phase 8        mdtest_hard_delete 37.775 kiops : time 293.52 seconds
[SCORE] Bandwidth 11.0028 GB/s : IOPS 258.151 kiops : TOTAL 53.2953



NGIO Prototype

• 34 node cluster with 
3TB of Intel 
DCPMM per node

• 2 CPUS per node, 
each with 1.5TB of 
DCPMM and 96GB 
of DRAM

• External Lustre 
filesystem



Summary

• Enabling new technologies with HPC systems 
requires systemware support

• Transparently handling data for applications 
requires integration with job schedulers and 
data storage targets

• Tools are essential to allow exploitation of new 
hardware without requiring code change

• Tools very useful to evaluate design decision 
and approaches for applications and systems

• In-node B-APM is potentially very powerful for 
performance, but will require some changes to 
use efficiently (either at the systemware level 
or the application level)


