

Application IO analysis with Lustre Monitoring using LASSi for ARCHER

Karthee Sivalingam & Harvey Richardson HPE HPC/AI EMEA Research Lab

HPE HPC/AI EMEA Research Lab

	Deep Technical Collaboration	 HPE & Customers work together Focus on new technologies Drive future HPE products Long term technical relationship 	
	Research Interests	 Memory hierarchy Data Movement and Workflow Compiler and mathematical optimisation HPC in Cloud, AI and Big Data 	
	Models	 Center of Excellence (CoE) Value Add projects EU H2020 research projects 	
Hewlett Packard			

Centers of Excellence in EMEA

ARCHER, UK

- LASSi IO Monitoring and Analytics
- Application tuning (XC30)
- IO performance Optimisation

KAUST, KSA

- Deep Research investigation
- Asynchronous tasking
- Deep Learning for Bio-Science

GW4

- ARM system
 tuning
- ARM ecosystem
 development
- Joint ARM, Cavium partnership

Current H2020 Projects

LASSi: an introduction

Gain better understanding of performance issues in a complex workload for a shared HPC system

A different approach based on risks

- The simplest way to look at risks is perhaps:
- In isolation, slowdown will happen only when an application does more IO than expected (for example due to a configuration or code change)
- Also users will report slowdown only when they encounter more IO in a filesystem than expected
- We will use this idea as a metric for risks

Risk metrics

$$risk_{fs}(x) = \frac{x - \alpha * avg_{fs}(x)}{\alpha * avg_{fs}(x)}$$

- *x* is any IO operation OSS or MDS
- Risk is calculated for each application run
- We use averages for IO operation for each filesystem
- We calculate risk as scale of deviation from α times the avg on a filesystem
- Higher value of risk denotes a higher risk of slowdown

Metrics for IO

Risk

$$risk_{oss} = risk_{read_kb} + risk_{read_ops} + risk_{write_kb} + risk_{write_ops} + risk_{other}$$

$$risk_{mds} = risk_{open} + risk_{close} + risk_{getattr} + risk_{setattr} + risk_{mkdir}$$

+ $risk_{rmdir} + risk_{mknod} + risk_{link} + risk_{unlink} + risk_{ren}$
+ $risk_{getxattr} + risk_{setxattr} + risk_{statfs} + risk_{sync} + risk_{cdr} + risk_{sdr}$

Quality

$$read_kb_ops = \frac{read_ops * 1024}{read_kb}$$

$$write_kb_ops = \frac{write_ops * 1024}{write_kb}$$

LASSi – a tool for real-time analysis.

- Provides an automated metric based analysis of IO
- Risk model has been validated by comparison with actual reported slowdown incidents
- Quality model for studying efficiency of application IO
- LASSi offers
 - A coarse IO profile of each application running
 - Identification of abnormal filesystem and application IO usage
 - Identification of exact times when the filesystem is at risk of slowdown
 - Identification of exact applications causing the risk of slowdown

Example of displays for helpdesk - daily risk to oss

Example of displays for helpdesk - daily risk to mds

ARCHER Analysis

Based on data from April 2017 to November 2019

So what about Exascale?

- Technology

- Initial Exascale systems will still use Lustre (gperformant with NVRAM)
- We are likely to move to object store (key-value store as backend)
- On top of this will use standard APIs like MPI-IO, NetCDF, HDF5
- Will still want a POSIX layer (with its scaling limitations)
- Projects like DAOS are interesting with increasing AI, Big Data applications
- Instrumentation and analysis still important
- Can we spot trends in applications/science as we move forward?
- Are we seeing changes today on ARCHER?

ARCHER Projects

Mesoscale Engineering	: lammps, Foam
Turbulence	: HYDRA, incompact3D, solver
Combustion	: boffin, senga, Foam
Ocean Science	: OPA, Nemo, mitgcmuv
AstroPhysics and Cosmology	: UKRmol
GeoPhysics and Seismology	: vasp, buildcell, axisem3d, wein2k
Atomistic Simulation	: castep, vasp, elk
Material Chemistry	: aims, vasp, nwchem
Climate Science	: UM_atmos, mitgcmuv, nemo, wrf

ARCHER: Read ~ 59 PB, Write ~ 192 PB

ARCHER: Read ~ 59 PB, Write ~ 192 PB

ARCHER: Read ~ 59 PB, Write ~ 192 PB

ARCHER MDS

Plasma Physics

Mesoscale Engineering

■ Turbulence (CFD)

Ocean Science

Astrophysics and Cosmology

Geophysics and Seismology

Atomistic simulation

Material Chemistry

Climate Science

Read/Write in ARCHER

Metadata operations in ARCHER

Enterprise

Applications

Code name	Application description
castep	Calculating properties of materials from first principles
solver	Flow Solver, https://www.ukturbulence.co.uk/flow-solvers.html .
vasp	Vienna Ab initio Simulation Package, https://www.vasp
boffin	Large Eddy Simulation(LES) code
lammps	Large-scale Atomic/Molecular Massively Parallel Simulator
python	Python based codes
Foam	Open Source Computational Fluid Dynamics (CFD) Toolbox
xios	XML-IO-Server - I/O management in climate codes
atmos	Numerical model of the atmosphere
axisem3d	Simulation of Seismic wave propagation
HYDRA	A Multi-physics Simulation Code
incompact	A high-order finite-difference flow solvers
senga	Direct Numerical Simulation (DNS) of turbulent combustion
mitgcmuv	MIT general circulation model
elk	all-electron full-potential linearised augmented-plane wave (LAPW) code
aims	ab initio molecular simulations
nwchem	Open Source High-Performance Computational Chemistry

Hewlett Packard Enterprise

Risk to OSS vs MDS

Read vs Write quality

Read vs Write quality

LASSi in MetOffice

Analyse IO workloads of MetOffice collaboration machine

MetOffice job profile

MetOffice jobs profile

- Histogram of runtime shows 91% of the jobs run less than 6 minutes and 68% of the jobs run less than 50 seconds.
- Major proportion of jobs use shared nodes
- LAPCAT with 3 mins of data aggregation and limited/no shared node usage information is not suitable for MetOffice integration
- Cray View for ClusterStor is better suited for this workload.

Cray View for ClusterStor

- HPC Storage System Monitoring (to be extended to full system monitoring in Shasta)
- a monitoring and metrics software package
- collects and persists at a fine resolution of 30 seconds
 - Lustre performance metrics
 - job metrics
- Monitors system events specific to storage
- Grafana based UI for continuous monitoring

MetOffice LASSi framework

Summary

- LASSi provides an application-centric, non-invasive approach based on metrics to analyse slowdown due to IO.
- -Valuable in understanding application I/O behaviour on ARCHER. (ARCHER2 will have a much newer filesystem so the challenges and possibilities for optimisation will change)
- Different communities/applications stress the filesystem in different ways. For some communities these requirements are changing rapidly as the scale up
- Need to work with Project managers, Scientists and application developers to manage IO requirements and demands
- Continuous monitoring and analysis important in Exascale resource management.

Acknowledgements

Engineering and Physical Sciences Research Council

a Hewlett Packard Enterprise company

We are done! Any Questions

Karthee.Sivalingam@hpe.com

linkedin.com/company/cray-inc-/ in

