
Application IO analysis with
Lustre Monitoring using
LASSi for ARCHER

Karthee Sivalingam & Harvey Richardson
HPE HPC/AI EMEA Research Lab

2

HPE HPC/AI EMEA Research Lab

Deep
Technical

Collaboration

Research
Interests

Models

• HPE & Customers work
together

• Focus on new technologies
• Drive future HPE products
• Long term technical

relationship

• Memory hierarchy
• Data Movement and Workflow
• Compiler and mathematical

optimisation
• HPC in Cloud, AI and Big Data

• Center of Excellence (CoE)
• Value Add projects
• EU H2020 research projects

3

Centers of Excellence in EMEA

ARCHER, UK
• LASSi - IO

Monitoring and
Analytics

• Application
tuning (XC30)

• IO performance
Optimisation

KAUST, KSA
• Deep Research

investigation
• Asynchronous

tasking
• Deep Learning

for Bio-Science

GW4
• ARM system

tuning
• ARM ecosystem

development
• Joint ARM,

Cavium
partnership

4

Current H2020 Projects

EXPERTISE

MAESTRO

EPIGRAM-HS

SODALITE

Plan4Res

Funded PhDs

LASSi: an introduction
Gain better understanding of performance
issues in a complex workload for a shared
HPC system

5

Why LASSi?

6

Runtime
variation

Diverse
workloads

Power

Network

Filesystem

Memory

Compute

Develop
Execute

Monitor
Triage

Plan
Procure

HPC service
provider

Project
Managers

Developer

Scientist

HPC
Administrator HPC Users

Application run time

LASSi

7

Lustre
Filesystem

My job

Other
jobs

Rogue
app

Risk of
slowdown

IO
Quality

Application
Profile

Lustre
Statistics

Scheduler
Data

A different approach
based on risks

● The simplest way to look at risks is perhaps:

● In isolation, slowdown will happen only when an application does more IO than

expected (for example due to a configuration or code change)

● Also users will report slowdown only when they encounter more IO in a filesystem

than expected

● We will use this idea as a metric for risks

8

Risk metrics

● 𝓍 is any IO operation OSS or MDS

● Risk is calculated for each application run

● We use averages for IO operation for each filesystem

● We calculate risk as
scale of deviation from 𝛼 times the 𝑎𝑣𝑔 on a filesystem

● Higher value of risk denotes a higher risk of slowdown

Sivalingam, Richardson, Tate and Lafferty

To characterise situations that cause slowdown means considering raw I/O rate, metadata operations and
quality (size) of I/O operations. For example, Lustre filesystem usage is optimal when at least 1 MB is read
or written for each operation (read_ops or write_ops). Comparing the read_mb, write_mb with the read_-
ops and write_ops from Table 1, we can infer that the reads are usually sub-optimal (⌧ 1MB) compared to
writes.

The central metadata server can sustain a certain rate of metadata operations, above which any metadata
request from any application or group of applications will cause slowdown. To provide the type of analysis
required, LASSi must comprehend this complex mixture of different applications with widely different
read/write patterns, the metadata operations running at the same time and how these interact and affect each
other. This requirement informs the LASSi metrics definition.

3.2 Definition of Metrics

Metrics for quantity and quality of application I/O operations must be defined. We first define the risk for
any OSS or MDS operation x on a filesystem f s as

risk f s(x) =
x�a ⇤avg f s(x)

a ⇤avg f s(x)
(2)

a is a scaling factor and is set arbitrarily to 2 for this analysis. The risk metric measures the deviation
of Lustre operations from the (scaled) average on a filesystem. A higher value indicates higher risk of
slowdown to a filesystem.

We introduce metrics riskoss and riskmds that accumulate risks to OSS and MDS respectively. Non-positive
risk contributions are always ignored.

riskoss = riskread_kb + riskread_ops + riskwrite_kb + riskwrite_ops + riskother (3)

riskmds = riskopen + riskclose + riskgetattr + risksetattr + riskmkdir

+ riskrmdir + riskmknod + risklink + riskunlink + riskren

+ riskgetxattr + risksetxattr + riskstat f s + risksync + riskcdr + risksdr

(4)

The above metric measures the quantity of I/O operations, but not the quality. On Lustre 1 MB is the optimal
size for read or write per operation. We need a measure of the quality of application reads and writes. We
define the following metric

read_kb_ops =
read_ops⇤1024

read_kb
(5)

write_kb_ops =
write_ops⇤1024

write_kb
(6)

The read or write quality is optimal when read_kb_ops = 1 or write_kb_ops = 1. A value of
read_kb_ops >> 1 or write_kb_ops >> 1 denotes poor quality read and writes. In general, risk measures
the quantity of I/O and ops measures the quality.

3.3 LASSi Architecture

LASSi analytics consists of a complex workflow of data movement across different components developed
in PySpark (http://spark.apache.org/docs/2.2.0/api/python/pyspark.html) - a Python API for Spark - C and

12

2

𝑎𝑣𝑔(𝑥) 𝑥

5

𝑟𝑖𝑠𝑘(𝑥)
𝛼 = 1

10

Quality

Risk

Metrics for IO

Sivalingam, Richardson, Tate and Lafferty

To characterise situations that cause slowdown means considering raw I/O rate, metadata operations and
quality (size) of I/O operations. For example, Lustre filesystem usage is optimal when at least 1 MB is read
or written for each operation (read_ops or write_ops). Comparing the read_mb, write_mb with the read_-
ops and write_ops from Table 1, we can infer that the reads are usually sub-optimal (⌧ 1MB) compared to
writes.

The central metadata server can sustain a certain rate of metadata operations, above which any metadata
request from any application or group of applications will cause slowdown. To provide the type of analysis
required, LASSi must comprehend this complex mixture of different applications with widely different
read/write patterns, the metadata operations running at the same time and how these interact and affect each
other. This requirement informs the LASSi metrics definition.

3.2 Definition of Metrics

Metrics for quantity and quality of application I/O operations must be defined. We first define the risk for
any OSS or MDS operation x on a filesystem f s as

risk f s(x) =
x�a ⇤avg f s(x)

a ⇤avg f s(x)
(2)

a is a scaling factor and is set arbitrarily to 2 for this analysis. The risk metric measures the deviation
of Lustre operations from the (scaled) average on a filesystem. A higher value indicates higher risk of
slowdown to a filesystem.

We introduce metrics riskoss and riskmds that accumulate risks to OSS and MDS respectively. Non-positive
risk contributions are always ignored.

riskoss = riskread_kb + riskread_ops + riskwrite_kb + riskwrite_ops + riskother (3)

riskmds = riskopen + riskclose + riskgetattr + risksetattr + riskmkdir

+ riskrmdir + riskmknod + risklink + riskunlink + riskren

+ riskgetxattr + risksetxattr + riskstat f s + risksync + riskcdr + risksdr

(4)

The above metric measures the quantity of I/O operations, but not the quality. On Lustre 1 MB is the optimal
size for read or write per operation. We need a measure of the quality of application reads and writes. We
define the following metric

read_kb_ops =
read_ops⇤1024

read_kb
(5)

write_kb_ops =
write_ops⇤1024

write_kb
(6)

The read or write quality is optimal when read_kb_ops = 1 or write_kb_ops = 1. A value of
read_kb_ops >> 1 or write_kb_ops >> 1 denotes poor quality read and writes. In general, risk measures
the quantity of I/O and ops measures the quality.

3.3 LASSi Architecture

LASSi analytics consists of a complex workflow of data movement across different components developed
in PySpark (http://spark.apache.org/docs/2.2.0/api/python/pyspark.html) - a Python API for Spark - C and

Sivalingam, Richardson, Tate and Lafferty

To characterise situations that cause slowdown means considering raw I/O rate, metadata operations and
quality (size) of I/O operations. For example, Lustre filesystem usage is optimal when at least 1 MB is read
or written for each operation (read_ops or write_ops). Comparing the read_mb, write_mb with the read_-
ops and write_ops from Table 1, we can infer that the reads are usually sub-optimal (⌧ 1MB) compared to
writes.

The central metadata server can sustain a certain rate of metadata operations, above which any metadata
request from any application or group of applications will cause slowdown. To provide the type of analysis
required, LASSi must comprehend this complex mixture of different applications with widely different
read/write patterns, the metadata operations running at the same time and how these interact and affect each
other. This requirement informs the LASSi metrics definition.

3.2 Definition of Metrics

Metrics for quantity and quality of application I/O operations must be defined. We first define the risk for
any OSS or MDS operation x on a filesystem f s as

risk f s(x) =
x�a ⇤avg f s(x)

a ⇤avg f s(x)
(2)

a is a scaling factor and is set arbitrarily to 2 for this analysis. The risk metric measures the deviation
of Lustre operations from the (scaled) average on a filesystem. A higher value indicates higher risk of
slowdown to a filesystem.

We introduce metrics riskoss and riskmds that accumulate risks to OSS and MDS respectively. Non-positive
risk contributions are always ignored.

riskoss = riskread_kb + riskread_ops + riskwrite_kb + riskwrite_ops + riskother (3)

riskmds = riskopen + riskclose + riskgetattr + risksetattr + riskmkdir

+ riskrmdir + riskmknod + risklink + riskunlink + riskren

+ riskgetxattr + risksetxattr + riskstat f s + risksync + riskcdr + risksdr

(4)

The above metric measures the quantity of I/O operations, but not the quality. On Lustre 1 MB is the optimal
size for read or write per operation. We need a measure of the quality of application reads and writes. We
define the following metric

read_kb_ops =
read_ops⇤1024

read_kb
(5)

write_kb_ops =
write_ops⇤1024

write_kb
(6)

The read or write quality is optimal when read_kb_ops = 1 or write_kb_ops = 1. A value of
read_kb_ops >> 1 or write_kb_ops >> 1 denotes poor quality read and writes. In general, risk measures
the quantity of I/O and ops measures the quality.

3.3 LASSi Architecture

LASSi analytics consists of a complex workflow of data movement across different components developed
in PySpark (http://spark.apache.org/docs/2.2.0/api/python/pyspark.html) - a Python API for Spark - C and

Architecture

LAPCAT

PBS

LASA(C)

APRUN_filter
(py)

Data Ingest
(PySpark)

LogtoParquet
(Scala)

Log-
Analytics

(Spark-DB)

LASSi
Analyser
(PySpark)

Daily report SAFE

Users Support
Staff

LASSi – a tool for real-time analysis.

● Provides an automated metric based analysis of IO

● Risk model has been validated by comparison with actual reported slowdown incidents

● Quality model for studying efficiency of application IO

● LASSi offers

● A coarse IO profile of each application running

● Identification of abnormal filesystem and application IO usage

● Identification of exact times when the filesystem is at risk of slowdown

● Identification of exact applications causing the risk of slowdown

Example of displays for helpdesk - daily risk to oss

Example of displays for helpdesk - daily risk to mds

ARCHER Analysis
Based on data from April 2017 to November
2019

15

– Technology

– Initial Exascale systems will still use Lustre (gperformant with NVRAM)

– We are likely to move to object store (key-value store as backend)

– On top of this will use standard APIs like MPI-IO, NetCDF, HDF5

– Will still want a POSIX layer (with its scaling limitations)

– Projects like DAOS are interesting with increasing AI, Big Data applications

– Instrumentation and analysis still important

– Can we spot trends in applications/science as we move forward?

– Are we seeing changes today on ARCHER?

So what about Exascale?

16

ARCHER Projects

17

Mesoscale Engineering : lammps, Foam
Turbulence : HYDRA, incompact3D, solver
Combustion : boffin, senga, Foam
Ocean Science : OPA, Nemo, mitgcmuv
AstroPhysics and Cosmology : UKRmol
GeoPhysics and Seismology : vasp, buildcell, axisem3d, wein2k
Atomistic Simulation : castep, vasp, elk
Material Chemistry : aims, vasp, nwchem
Climate Science : UM_atmos, mitgcmuv, nemo, wrf

ARCHER: Read ~ 59 PB, Write ~ 192 PB

Mesoscale
Engineering

6%

Turbulence
(CFD)

2% Ocean
Science

18%

Astrophysic
s and

Cosmology
9%

Geophysics
and

Seismology
7%Atomistic

simulation
6%

Material
Chemistry

7%

Climate
Science

7%

Others
37%

READS

Combustion
4%

Ocean Science
7%

Astrophysics and
Cosmology

1%

Geophysics and
Seismology

13%

Atomistic
simulation

15%

Material
Chemistry

14%

Climate Science
13%

Others
29%

WRITE
Plasma Physics

Mesoscale
Engineering
Combustion

Turbulence (CFD)

Ocean Science

Astrophysics and
Cosmology
Geophysics and
Seismology
Atomistic simulation

Material Chemistry

Climate Science

Others

ARCHER: Read ~ 59 PB, Write ~ 192 PB

Mesoscale
Engineering

, 3.57
Turbulence
(CFD), 1.40

Ocean
Science,

10.35

Astrophysic
s and

Cosmology,
5.08

READ
Mesoscale

Engineering, 1.48 Turbulence
(CFD), 4.00

Ocean Science,
14.56

Astrophysics and
Cosmology, 1.69

WRITE
Plasma Physics

Mesoscale
Engineering
Combustion

Turbulence (CFD)

Ocean Science

Astrophysics and
Cosmology
Geophysics and
Seismology
Atomistic simulation

Material Chemistry

Climate Science

Others

ARCHER: Read ~ 59 PB, Write ~ 192 PB

Geophysics
and

Seismology
, 4.32Atomistic

simulation,
3.38

Material
Chemistry,

4.12

Climate
Science,

4.08

READ

Geophysics and
Seismology,

25.76

Atomistic
simulation, 29.17

Material
Chemistry, 26.01

Climate Science,
24.09

WRITE
Plasma Physics

Mesoscale
Engineering
Combustion

Turbulence (CFD)

Ocean Science

Astrophysics and
Cosmology
Geophysics and
Seismology
Atomistic simulation

Material Chemistry

Climate Science

Others

ARCHER MDS

1% 5%

Turbulence (CFD),
6%

Ocean Science
, 14%

0%
Geophysics and

Seismology ,
7%

Atomistic
simulation, 7%

Material Chemistry,
21%

Climate Science
, 8%

Others, 31%

Plasma Physics
Mesoscale Engineering
Combustion
Turbulence (CFD)
 Ocean Science
Astrophysics and Cosmology
 Geophysics and Seismology
Atomistic simulation
Material Chemistry
 Climate Science
Others

Read/Write in ARCHER

0

5

10

15

20

25

30

35

4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11

2017 2018 2019

R
EA

D
/W

R
IT

E
(P

ET
A

BY
TE

S)

MONTH AND YEAR

Turbulence (CFD)

Material Chemistry

Plasma Physics

Mesoscale Engineering

Combustion

Astrophysics and
Cosmology
Atomistic simulation

Ocean Science

Climate Science

Geophysics and
Seismology

Metadata operations in ARCHER

0

50

100

150

200

250

4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11

2017 2018 2019

M
ET

AD
AT

A
O

PE
R

AT
IO

N
S

(1
09)

MONTH AND YEAR

Turbulence (CFD)

Material Chemistry

Plasma Physics

Mesoscale Engineering

Combustion

Astrophysics and
Cosmology
Atomistic simulation

Ocean Science

 Climate Science

 Geophysics and
Seismology

Applications

24

Code name Application description

castep Calculating properties of materials from first principles
solver Flow Solver, https://www.ukturbulence.co.uk/flow-solvers.html .
vasp Vienna Ab initio Simulation Package, https://www.vasp
boffin Large Eddy Simulation(LES) code
lammps Large-scale Atomic/Molecular Massively Parallel Simulator
python Python based codes
Foam Open Source Computational Fluid Dynamics (CFD) Toolbox
xios XML-IO-Server - I/O management in climate codes
atmos Numerical model of the atmosphere
axisem3d Simulation of Seismic wave propagation
HYDRA A Multi-physics Simulation Code
incompact A high-order finite-difference flow solvers
senga Direct Numerical Simulation (DNS) of turbulent combustion
mitgcmuv MIT general circulation model
elk all-electron full-potential linearised augmented-plane wave (LAPW) code
aims ab initio molecular simulations
nwchem Open Source High-Performance Computational Chemistry

Risk to OSS vs MDS

castep
solvervasp

lammps

boffin

python
Foam

xios

atmos axisem3d

HYDRA

incompact

senga

mitgcmuv

elk

aims

nwchem

-10

0

10

20

30

40

50

60

70

80

-20 -10 0 10 20 30 40 50 60 70 80

ris
k_

m
ds

risk_oss

castep

solver

vasp

lammps

boffin

python

Foam

xios

atmos

axisem3d

HYDRA

incompact

senga

mitgcmuv

elk

aims

nwchem

Read vs Write quality

solver

boffin

python Foam
xios

HYDRA

senga
mitgcmuv

-1000

0

1000

2000

3000

4000

5000

6000

7000

-200 0 200 400 600 800 1000

W
rit

e
qu

al
ity

Read quality

castep
solver
vasp
lammps
boffin
python
Foam
xios
atmos
axisem3d
HYDRA
incompact
senga
mitgcmuv
elk
aims
nwchem

Read vs Write quality

castep

solver

vasp lammpspython

Foam

xios

atmos

axisem3d

incompact
mitgcmuvelk

aims
nwchem

-100

0

100

200

300

400

500

-100 0 100 200 300 400 500

W
rit

e
qu

al
ity

Read quality

castep
solver
vasp
lammps
boffin
python
Foam
xios
atmos
axisem3d
HYDRA
incompact
senga
mitgcmuv
elk
aims
nwchem

LASSi in MetOffice
Analyse IO workloads of MetOffice
collaboration machine

28

MetOffice job profile

1 10 100 1000 10000 100000 1000000

0-50

50-100

100-150

150-200

200-250

250-300

300-350

350-400

400-450

450-500

500-550

Number of Jobs

R
un

 ti
m

e
in

 s
ec

on
ds

MetOffice jobs profile

30

– Histogram of runtime shows 91% of the jobs run less than 6 minutes and 68% of the jobs run less than 50

seconds.

– Major proportion of jobs use shared nodes

– LAPCAT with 3 mins of data aggregation and limited/no shared node usage information is not suitable for

MetOffice integration

– Cray View for ClusterStor is better suited for this workload.

Cray View for ClusterStor

– HPC Storage System Monitoring (to be extended to full system monitoring in Shasta)

– a monitoring and metrics software package

– collects and persists at a fine resolution of 30 seconds

– Lustre performance metrics

– job metrics

– Monitors system events specific to storage

– Grafana based UI for continuous monitoring

31

MetOffice LASSi framework

32

LASSi

Customised
Reports

Cray View

Requires Dev

Cray View for Clusterstor

InFlux DB

Kafka bus

Lustre Job
stats

Grafana

Alarms/
Triggers

Analysis

– LASSi provides an application-centric, non-invasive approach based on metrics to analyse

slowdown due to IO.

– Valuable in understanding application I/O behaviour on ARCHER. (ARCHER2 will have a much

newer filesystem so the challenges and possibilities for optimisation will change)

– Different communities/applications stress the filesystem in different ways. For some

communities these requirements are changing rapidly as the scale up

– Need to work with Project managers, Scientists and application developers to manage IO

requirements and demands

– Continuous monitoring and analysis important in Exascale resource management.

Summary

Acknowledgements

linkedin.com/company/cray-inc-/

Karthee.Sivalingam@hpe.com

We are done!
Any Questions

