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LASSi: an introduction
Gain better understanding of performance 
issues in a complex workload for a shared 
HPC system
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Why LASSi?
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Application run time

LASSi
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A different approach 
based on risks

● The simplest way to look at risks is perhaps:

● In isolation, slowdown will happen only when an application does more IO than 

expected (for example due to a configuration or code change)

● Also users will report slowdown only when they encounter more IO in a filesystem 

than expected

● We will use this idea as a metric for risks
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Risk metrics

● 𝓍 is any IO operation OSS or MDS

● Risk is calculated for each application run

● We use averages for IO operation for each filesystem

● We calculate risk as 
scale of deviation from 𝛼 times the 𝑎𝑣𝑔 on a filesystem  

● Higher value of risk denotes a higher risk of slowdown

Sivalingam, Richardson, Tate and Lafferty

To characterise situations that cause slowdown means considering raw I/O rate, metadata operations and
quality (size) of I/O operations. For example, Lustre filesystem usage is optimal when at least 1 MB is read
or written for each operation (read_ops or write_ops). Comparing the read_mb, write_mb with the read_-
ops and write_ops from Table 1, we can infer that the reads are usually sub-optimal (⌧ 1MB) compared to
writes.

The central metadata server can sustain a certain rate of metadata operations, above which any metadata
request from any application or group of applications will cause slowdown. To provide the type of analysis
required, LASSi must comprehend this complex mixture of different applications with widely different
read/write patterns, the metadata operations running at the same time and how these interact and affect each
other. This requirement informs the LASSi metrics definition.

3.2 Definition of Metrics

Metrics for quantity and quality of application I/O operations must be defined. We first define the risk for
any OSS or MDS operation x on a filesystem f s as

risk f s(x) =
x�a ⇤avg f s(x)

a ⇤avg f s(x)
(2)

a is a scaling factor and is set arbitrarily to 2 for this analysis. The risk metric measures the deviation
of Lustre operations from the (scaled) average on a filesystem. A higher value indicates higher risk of
slowdown to a filesystem.

We introduce metrics riskoss and riskmds that accumulate risks to OSS and MDS respectively. Non-positive
risk contributions are always ignored.

riskoss = riskread_kb + riskread_ops + riskwrite_kb + riskwrite_ops + riskother (3)

riskmds = riskopen + riskclose + riskgetattr + risksetattr + riskmkdir

+ riskrmdir + riskmknod + risklink + riskunlink + riskren

+ riskgetxattr + risksetxattr + riskstat f s + risksync + riskcdr + risksdr

(4)

The above metric measures the quantity of I/O operations, but not the quality. On Lustre 1 MB is the optimal
size for read or write per operation. We need a measure of the quality of application reads and writes. We
define the following metric

read_kb_ops =
read_ops⇤1024

read_kb
(5)

write_kb_ops =
write_ops⇤1024

write_kb
(6)

The read or write quality is optimal when read_kb_ops = 1 or write_kb_ops = 1. A value of
read_kb_ops >> 1 or write_kb_ops >> 1 denotes poor quality read and writes. In general, risk measures
the quantity of I/O and ops measures the quality.

3.3 LASSi Architecture

LASSi analytics consists of a complex workflow of data movement across different components developed
in PySpark (http://spark.apache.org/docs/2.2.0/api/python/pyspark.html) - a Python API for Spark - C and
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LASSi – a tool for real-time analysis.

● Provides an automated metric based analysis of IO

● Risk model has been validated by comparison with actual  reported slowdown incidents

● Quality model for studying efficiency of  application IO  

● LASSi offers

● A coarse IO profile of each application running 

● Identification of abnormal filesystem and application IO usage

● Identification of exact times when the filesystem is at risk of slowdown

● Identification of exact applications causing the risk of slowdown



Example of displays for helpdesk - daily risk to oss



Example of displays for helpdesk - daily risk to mds



ARCHER Analysis
Based on data from April 2017 to November 
2019 
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– Technology

– Initial Exascale systems will still use Lustre (gperformant with NVRAM)

– We are likely to move to object store (key-value store as backend)

– On top of this will use standard APIs like MPI-IO, NetCDF, HDF5

– Will still want a POSIX layer (with its scaling limitations)

– Projects like DAOS are interesting with increasing AI, Big Data applications

– Instrumentation and analysis still important

– Can we spot trends in applications/science as we move forward?

– Are we seeing changes today on ARCHER?

So what about Exascale?
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ARCHER Projects
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Mesoscale Engineering           :  lammps, Foam
Turbulence                               :  HYDRA, incompact3D, solver
Combustion                              :  boffin, senga, Foam
Ocean Science                        :   OPA, Nemo, mitgcmuv
AstroPhysics and Cosmology  :  UKRmol
GeoPhysics and Seismology   :  vasp, buildcell, axisem3d, wein2k
Atomistic Simulation                :  castep, vasp, elk
Material Chemistry                  :  aims, vasp, nwchem
Climate Science                      :  UM_atmos, mitgcmuv, nemo, wrf



ARCHER: Read ~ 59 PB, Write ~ 192 PB
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ARCHER: Read ~ 59 PB, Write ~ 192 PB
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ARCHER MDS 
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Read/Write in ARCHER
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Metadata operations in ARCHER
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Applications
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Code name Application description 

castep Calculating properties of materials from first principles 
solver Flow Solver, https://www.ukturbulence.co.uk/flow-solvers.html .
vasp Vienna Ab initio Simulation Package, https://www.vasp
boffin Large Eddy Simulation(LES) code 
lammps Large-scale Atomic/Molecular Massively Parallel Simulator 
python Python based codes
Foam Open Source Computational Fluid Dynamics (CFD) Toolbox 
xios XML-IO-Server - I/O management in climate codes 
atmos Numerical model of the atmosphere 
axisem3d Simulation of Seismic wave propagation 
HYDRA A Multi-physics Simulation Code 
incompact A high-order finite-difference flow solvers 
senga Direct Numerical Simulation (DNS) of turbulent combustion 
mitgcmuv MIT general circulation model 
elk all-electron full-potential linearised augmented-plane wave (LAPW) code 
aims ab initio molecular simulations 
nwchem Open Source High-Performance Computational Chemistry  



Risk to OSS vs MDS
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Read vs Write quality
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Read vs Write quality
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LASSi in MetOffice
Analyse IO workloads of MetOffice 
collaboration machine
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MetOffice job profile
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MetOffice jobs profile
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– Histogram of runtime shows 91% of the jobs run less than 6 minutes and 68% of the jobs run less than 50 

seconds.

– Major proportion of jobs use shared nodes

– LAPCAT with 3 mins of data aggregation and limited/no shared node usage information is not suitable for 

MetOffice integration

– Cray View for ClusterStor is better suited for this workload.



Cray View for ClusterStor

– HPC Storage System Monitoring  (to be extended to full system monitoring in Shasta)

– a monitoring and metrics software package

– collects and persists at a fine resolution of 30 seconds

– Lustre  performance metrics

– job metrics 

– Monitors system events specific to storage

– Grafana based UI for continuous monitoring
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MetOffice LASSi framework
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– LASSi provides an application-centric, non-invasive approach based on metrics to analyse 

slowdown due to IO.  

– Valuable in understanding application I/O behaviour on ARCHER. (ARCHER2 will have a much 

newer filesystem so the challenges and possibilities for optimisation will change)

– Different communities/applications stress the filesystem in different ways. For some 

communities these requirements are changing rapidly as the scale up

– Need to work with Project managers, Scientists and application developers to manage IO 

requirements and demands

– Continuous monitoring and analysis important in Exascale resource management.

Summary
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