Computer Science Department © @ Un|vers|tyof
Reading

Exploiting heterogeneous resource utilisation
for scientific workflows

Erdem G. YILMAZ, Julian M. KUNKEL

https://hps.vidio.org

2020-04-23
Copyright University of Reading LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT

https://hps.vi4io.org
http://hps.vi4io.org

Introduction Evaluation Summary

000000 000000000000 00 [o]e]
O Utl | ne University of
Reading

Introduction
Evaluation

Summary

Erdem G. YILMAZ HPS LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT 2/24

Introduction Evaluation Summary

Drivers of this research @Eﬂlversnyof
eading

B Data sizes are approaching exa-byte scale
» Impossible to load/work on entire data set

B Its not feasible to move the data around
» Network bandwidth becomes a bottleneck

B Varity of hardware resources increasing
» Distributed Storage, Burst-buffers, NVRAM, SSD, Hybrid SSD+HDD, GPU

B Optimisation techniques are a domain on its own
» Tuning HPC, edge-computing, cloud provisioning

Erdem G. YILMAZ HPS LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT 3/24

Introduction Evaluation Summary

Expected outcome University of
Reading

B Code — Data solutions or data streaming

» To avoid copying data around, code can be copied to node where data resides
» Data, that doesnt fit into node memory, can be streamed to nodes.

B In-situ & In-transit processing techniques

» Certain calculations/transformations will save compute/post-process cycle
» Node local storage and computation to relieve network bandwidth

B Smart utilisation of heterogeneous hardware resources

» Running code on CPU and/or GPU
» Able to make a decision on which storage to be used

B Scientists should care less about optimisation and execution

» Detect/Annotate underlying hardware resource capability
» Running the workflow on best hardware mapping

Erdem G. YILMAZ HPS LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT 4/24

Evaluation
00000000000000

P ro p 0Sa I University of
Reading

Predefined set of operators

’{ ML Model (]

v

Framework / Platform ‘ Executable Workflow

Resource Definition File
(Detected/Declared)

L3

Erdem G. YILMAZ HPS LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT 5/24

Introduction Evaluation Summary
00000 0000000000000 oo

Declaration

B A set of operators will be created to be used in workflows, e.g. mean, max
» Replicated for GPU and CPU
» Able to publish provenance/performance data at runtime
» Computational complexity and requirements of the operators are known

B User declares the workflow with its associated meta data

» Operators and their inputs becomes tasks of a DAG workflow

» Inputs identified, File type(NetCDF), location(local), size(100G)
» Underlying hardware resources, declared or detected

* Number of participating nodes and their specifications
* Resources on each node, CPU, RAM, GPU, Net, Storage sepcs.

Erdem G. YILMAZ HPS LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT 6/24

Introduction Evaluation Summary

0000e0 000000000000 00 [o]e]
PI‘O posa I University of
Reading

Workflow Orchestration

B A machine learning model will be utilised to layout the actual workflow

» Given the operators, inputs, hardware resources, where do we run the tasks
e CPU and or GPU
e Storage: node local, HDD, SDD, NVRAM, burst-buffer, distributed storage
¢ Grouping of tasks to reduce communication

» Execution metrics fed back to ML model for training
* Network communication performance
¢ Individual task timings
* Storage performance metrics

Erdem G. YILMAZ HPS LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT 7124

Introduction Evaluation Summary

EXperimentS @ Unlver5|tyof
Reading

Experiments that have been conducted

B C++, python(single/multi-process), numpy, CUDA(cupy), Dask

B GPU streaming for comparison.
B GStreamer application, with two custom plugins

» netcdf src plugin feeding lat x lon, 2D timeframes to accumulator
» CUDA gpu accumulator for average operator over timeframes

Experiments planned for future

B Utilising DeepStream SDK from NVIDIA
B Streaming frameworks (Apache Flink or Apache Storm)

Erdem G. YILMAZ HPS LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT 8/24

Introduction Evaluation Summary

000000 ©0000000000000 (o]
Setu p @ Unlver5|tyof
Reading
Input

Bl NetCDF file, 4.1G in size, stored on /dev/shm

B Single precision floats as temperature

The operation

B Mean of grid entries over all timeframes

The machine %r

B 132G free RAM 024
B 2x Intel Xeon(R) Silver 4108 CPU @ 1.80GHz, total 16 cores (32 with hpt)
B 1 GPU V100, 16G RAM, 5120 cuda cores

Erdem G. YILMAZ HPS LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT 9/24

Introduction Evaluation Summary

Python & Numpy Eneivae::sliitg'(éf

Single & multiprocess python

B Regular python looping as a single process, took 2804 sec.

total = np.zeros(shape=(lat_size,lon_size))
for lat_index in range(lat_size):
for lon_index in range(lon_size):
acc = 0
for i in range(tf_size):
acc += precip[i,lat_index, lon_index]

total[lat_index][lon_index] = acc

return total/tf_size

©® N o U A W N R

B Python looping with multiple processes, 30 processes, took 276 sec.
» Why not multi-threading? Global Interpreter Lock (GIL) won't let you

Erdem G. YILMAZ HPS LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT 10/24

Introduction Evaluation Summary
000000 00®00000000000 oo

Numpy

B Same operation with numpy, took 10 sec.
B Highly optimized C libraries under the hood.
B Has to load all data into memory, not feasible with larger data

from netCDF4 import Dataset
import numpy as np

precip = np.array(ds.variables["temp"]1[:1])

1
2
3
4| ds = Dataset(filename)
5
6| precip.mean(axis=0)

Erdem G. YILMAZ HPS LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT 11/24

Introduction Evaluation Summary
000000 000®0000000000 oo

cupy: numpy like operation with CUDA

B The mean() copy took 0.3sec.
B Easy to work with, seemless gpu use, read+load+calc took 13 sec.
B Requires all data to be loaded onto memory and then copied on to device

B Limiting factor is the file access, otherwise mean() is pretty fast.

1| from netCDF4 import Dataset

2| import numpy as np

3| import cupy as cp

4| ds = Dataset(filename)

s|with cp.cuda.Device(0):

6 temp = cp.array(ds.variables['temp’][:1],copy=True)
7 ds.close()

8 temp_mean_device = temp.mean(axis=0)

9 cp.asnumpy (temp_mean_device)

Erdem G. YILMAZ HPS LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT 12/24

Introduction Evaluation Summary

000000 [e]e]ele] Telelelelelelele]e) [o]e]
C / C++ University of
Reading

Single process

B Regular C/C++ code to perform the operation, took 11 sec.

1 for (size_t rec_index = 0; rec_index < timeDimSize; rec_index++)
2 {
3 read_single_rec(precip, rec_index, chunk,....);
4 for (int lat = 0; lat < latDimSize; lat++) {
5 for (int lon = 0; lon < lonDimSize; lon++) {
6 accum[lat][lon] += chunk[lat][long];
7 }
}
9 }

» NetCDF-C++ wrapper, regular triple for loop implementation
» What we loose in mean() operation, we gain in file reading

Erdem G. YILMAZ HPS LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT 13/24

Introduction Evaluation Summary
000000 00000@00000000 oo

CUDA Kernel
B Same operation with numpy, took 11 sec.
B Naive approach to GPU programming, heavily synchronized
B File I/0 synched, hence not pleasingly parallel
B Under utilized CUDA cores.

CUDA Streaming

B Kernel execution and Host to Device memory copy, took 9 sec.
B cudaDeviceSynchronize() had to be used for result integrity
B When executed with same file on NFS, it took 42 sec.

Erdem G. YILMAZ HPS LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT 14/24

Introduction Evaluation Summary
000000 000000@0000000 oo

C U DA PrOﬁ I er University of
Reading

=30935 Profiling application: ./src/cuda_streamfcuda3 fdev/shm/test.nc temp
=30935== Profiling result:
Type Time(%) Time Calls Avg Min Max Name
GPU activities: 93.55% 5.14222s 1.28556s 1.28492s 1.28736s mean(float*, int, int,
6.45% 354.28ms 70.856ms 356.1%us 89.893ms [CUDA memcpy HtoD]
0.01% 323.93us 323.93us 323.93us 323.93us [CUDA memcpy DtoH]
API calls: 80.80% 5.49503s 1.37376s 1.37279s 1.37617s cudaDeviceSynchronize
13.01% B884.96ms 442.45ms 2.4915ms 882.41ms cudaHostAlloc
6.02% 409.76ms 102.44ms 3.3230us 409.75ms cudaStreamCreate
05% 3.6835ms 920.89%9us 2.7970us 3.3548ms cudaFree
.085% 3.5378ms 1.7689ms 269.38Bus 3.2685ms cudaMalloc
02% 1.3426ms 335.64us 58.626us 1.0979ms cudalaunchKernel
01% 983.00us 491.50us 483.85us 499.15us cudaMemcpy
01% 942.73us 942.73us 942.73us 942.73us cuDeviceTotalMem
01% 358.99us 3.7000us 396ns 128.09us cuDeviceGetAttribute
00% 338.79us 84.697us 55.23%us 148.11us cudaMemcpyAsync
00% 73.688us 18.422us 6.2320us 51.007us cudaStreamDestroy
00% 35.923us 35.923us 35.923us 35.923us cuDeviceGetName
00% 5.4540us 5.4540us 5.4540us 5.4540us cuDeviceGetPCIBusId
00% 3.5760us 1.1920us 737ns 1.9240us cuDeviceGetCount
00% 1.6760us 838ns 482ns 1.1940us cuDeviceGet
00% 763ns 763ns 763ns 763ns cuDeviceGetUuid

R W e D b= NABNL LML UL

0.
<]

0.
8.
8.
0.
0.
0.
0.
0.
0.
0.
0.

Erdem G. YILMAZ HPS LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT

Introduction Evaluation Summary
000000 0000000@000000 oo

Improved kernel

B With better CUDA core utilisation and removed synchronisation, took 3 sec.

B Host to Device copy took 350ms, kernel execution took 25ms
B Some further optimisation helped with overall timing

» Major: Replacing triple loops with a flat array indexing
» Minor: Use of pinned memory (page-locked memory)

1| for(int k=0; k < part; k++){

2 current_part = kxtcount;

3 float sum = 0;

4 for(int t=0; t < nrec; t++){

5 sum += x[tid + current_part + t x single_rec_sizel;
6 }

7 accum[current_part+tid] += sum;

8}

Erdem G. YILMAZ HPS LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT 16/24

Introduction Evaluation Summary
000000 00000000e00000 oo

CUDA Profiler Improved Kernel University of
Reading

==31220== Profiling application: ./src/cuda_stream_new_kernel/cuda5 /dev/shm/test.nc temp
==31220== Profiling result:
Type Time(%) Time Avg Min Max Name
GPU activities: 93.30% 349.69ms 10.597ms 343.10us 11.866ms [CUDA memcpy HtoD]
6.61% 24.786ms 774.55us 769.47us 782.62us add(fleat*, int, int,
0.09% 342.27us 342.27us 342.27us 342.27us [CUDA memcpy DtoH]
API calls: 77.22% 371.79ms 11.618ms 2.8020us 370.64ms cudaStreamCreate
18.50% 89.060ms 44.530ms 3.1113ms 85.949ms cudaHostAlloc
2.59% 12.453ms 6.2265ms 420.23us 12.033ms cudaMemcpy
.50% 2.4198ms 75.618us 46.091us 387.21us cudaMemcpyAsync
.49% 2.3472ms 73.350us 45.408us 242.25us cudalaunchKernel
.28% 1.3395ms 334.88us 2.1870us 1.8495ms cudaFree
.20% 945.70us 472.85us 257.69us 688.01us cudaMalloc
.11% 524.85us 524.85us 524.85us 524.85us cuDeviceTotalMem

.05% 254.75us 2.6260us 263ns 91.012us cuDeviceGetAttribute
.01% 25.416us 1 25.416us 25.416us 25.416us cuDeviceGetName

.00% 4.7820us 4.7820us 4.7820us 4.7820us cuDeviceGetPCIBusId
.00% 2.7620us 920ns 438ns 1.8240us cuDeviceGetCount
.00% 1.2090us 604ns 317ns 892ns cuDeviceGet

]
6]
(¢}
(6]
]
0.06% 294.41us 9.2000us 6.3500us 67.714us cudaStreamDestroy
6]
(¢}
(6]
]
]
0.00% 529ns 529ns 529ns 529ns cuDeviceGetUuid

Erdem G. YILMAZ HPS LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT

Introduction Evaluation Summary
000000 000000000e0000 oo

Dask + Xarray

B Took 12 sec.
B Chunkwise operation enables us to work files larger than available mem size
B The chunks read by xarray. Local cluster of size 8 process, 32 threads

B Chunk sizes must be aligned with available memory on nodes.

from dask.distributed import Client

import xarray as xr

client = Client()

df = xr.open_dataset(filename, chunks={'time’:128, 'lat’:128, 'lon’':128})
da = df[’'temp’].data

future = client.compute(da.mean(0)) # returns a future

future.result()

N o U A W N M

Erdem G. YILMAZ HPS LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT 18/24

Introduction Evaluation Summary

000000 0000000000 e000 [o]e]
G Strea mer University of
Reading
pipeline
source filter sink

¥
4

GStreamer as a data processing pipeline

B A framework to move data inside a pipeline from a source to a sink
B Each component implemens a well defined interface
B Generally used for encoded audio/video processing and display

Erdem G. YILMAZ HPS LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT 19/24

Summary
[e]e}

Evaluation
0000000000080

Introduction
000000

G Stre amer University of

Reading
source element filter sink element
NetCDF ﬁzﬁ:f ‘
(gstfilesrc) gstfakesink
(gstplugin)

Two new plugins developed, netcdfsrc and netcdfdemux

B netcdfsrc: reads NetCDF file and sends to demux per timeframe
B netcdfdemux: accumulates incoming records and averages
B Ultimate aim was to interface NVIDIA DeepStream SDK

Erdem G. YILMAZ HPS LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT 20/24

Introduction Evaluation Summary

NVIDIA DeepStream @Emversnyof
ead ing

STREAM AND BATCH ANALYTICS

PixeLs INSIGHTS

<2

TRACK
COLLECT DECODE PRE-PROCESS INFERENCE ENCODE COMPOSITE ANALYZE DATA VISUALIZE

B A software SDK that utilizes CUDA through gstreamer interface
B Functionality revolves around video processing from multiple sources
B Pre-trained deep learning models, to detect features in a video stream

Erdem G. YILMAZ HPS LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT 21/24

Introduction Evaluation Summary

NeXt Ste pS @ Unlver5|tyof
Reading

Mid term plans

B Complete the literature survey on workflows and resource mappings
B Interface NVIDIA DeepStream SDK with our NetCDF gstreamer plugins

» Replacing video source with NetCDF file source plugin
» Write a plugin that can process NetCDF content on CUDA hw

B Further tests with GPU and workflow languages (CWL, swift)
B Identify the shortcomings of the previous experiments

Long term plans

B Develop a prototype that is able to

» Layout a workflow to resource mapping through ML model
» Gather metrics and train the ML model

Erdem G. YILMAZ HPS LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT 22/24

Introduction Evaluation Summary
000000 00000000000000 ®0

S umma ry @ Unlver5|ty of
Reading

Single proc python call, is horribly slow, took 2804s to complete
Multiprocessor is relatively faster, took 276s with 30 process, 10x faster
Numpy took 10 secs, 27x faster than the multiprocessor version

cupy took 9 secs. as fast as numpy, Device-Host memcpy takes its toll
C++ and Naive CUDA kernel are almost same with 11s

Improved CUDA kernel is 3x faster with 3s.

DASK + xarray, took 12 secs, able to cope with large files

Erdem G. YILMAZ HPS LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT 23/24

Introduction Evaluation Summary

Summary Continued @Eﬂlversnyof
ead ing

B DASK performed slower compared to numpy but its distributed
B Numpy is limited with data sizes that can fit on the node’s RAM
B CUDA is a faster alternative provided the problem is pleasingly parallel

B HPC/GPU tuning makes difference, its a complex domain of engineering

Erdem G. YILMAZ HPS LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT 24/24

	Introduction
	Motivation
	Proposal
	Experiments

	Evaluation
	Setup
	Python & Numpy
	cupy
	C/C++
	Dask
	GStreamer
	DeepStream

	Summary

