
Exploiting heterogeneous resource utilisation
for scientific workflows

https://hps.vi4io.org

Computer Science Department

Copyright University of Reading

2020-04-23

LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT

Erdem G. YILMAZ, Julian M. KUNKEL

SH

∞

)

https://hps.vi4io.org
http://hps.vi4io.org

Introduction Evaluation Summary

Outline

1 Introduction

2 Evaluation

3 Summary

Erdem G. YILMAZ SH LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT 2 / 24

Introduction Evaluation Summary

Drivers of this research

� Data sizes are approaching exa-byte scale

I Impossible to load/work on entire data set

� Its not feasible to move the data around

I Network bandwidth becomes a bottleneck

� Varity of hardware resources increasing

I Distributed Storage, Burst-buffers, NVRAM, SSD, Hybrid SSD+HDD, GPU

� Optimisation techniques are a domain on its own

I Tuning HPC, edge-computing, cloud provisioning

Erdem G. YILMAZ SH LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT 3 / 24

Introduction Evaluation Summary

Expected outcome

� Code→Data solutions or data streaming

I To avoid copying data around, code can be copied to node where data resides
I Data, that doesnt fit into node memory, can be streamed to nodes.

� In-situ & In-transit processing techniques

I Certain calculations/transformations will save compute/post-process cycle
I Node local storage and computation to relieve network bandwidth

� Smart utilisation of heterogeneous hardware resources

I Running code on CPU and/or GPU
I Able to make a decision on which storage to be used

� Scientists should care less about optimisation and execution

I Detect/Annotate underlying hardware resource capability
I Running the workflow on best hardware mapping

Erdem G. YILMAZ SH LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT 4 / 24

Introduction Evaluation Summary

Proposal

Erdem G. YILMAZ SH LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT 5 / 24

Introduction Evaluation Summary

Declaration

� A set of operators will be created to be used in workflows, e.g. mean, max

I Replicated for GPU and CPU
I Able to publish provenance/performance data at runtime
I Computational complexity and requirements of the operators are known

� User declares the workflow with its associated meta data

I Operators and their inputs becomes tasks of a DAG workflow
I Inputs identified, File type(NetCDF), location(local), size(100G)
I Underlying hardware resources, declared or detected

• Number of participating nodes and their specifications
• Resources on each node, CPU, RAM, GPU, Net, Storage sepcs.

Erdem G. YILMAZ SH LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT 6 / 24

Introduction Evaluation Summary

Proposal

Workflow Orchestration

� A machine learning model will be utilised to layout the actual workflow
I Given the operators, inputs, hardware resources, where do we run the tasks

• CPU and or GPU
• Storage: node local, HDD, SDD, NVRAM, burst-buffer, distributed storage
• Grouping of tasks to reduce communication

I Execution metrics fed back to ML model for training

• Network communication performance
• Individual task timings
• Storage performance metrics

Erdem G. YILMAZ SH LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT 7 / 24

Introduction Evaluation Summary

Experiments

Experiments that have been conducted

� C++, python(single/multi-process), numpy, CUDA(cupy), Dask

� GPU streaming for comparison.

� GStreamer application, with two custom plugins

I netcdf src plugin feeding lat x lon, 2D timeframes to accumulator
I CUDA gpu accumulator for average operator over timeframes

Experiments planned for future

� Utilising DeepStream SDK from NVIDIA

� Streaming frameworks (Apache Flink or Apache Storm)

Erdem G. YILMAZ SH LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT 8 / 24

Introduction Evaluation Summary

Setup

Input

� NetCDF file, 4.1G in size, stored on /dev/shm

� Single precision floats as temperature

The operation

� Mean of grid entries over all timeframes

The machine

� 132G free RAM

� 2x Intel Xeon(R) Silver 4108 CPU @ 1.80GHz, total 16 cores (32 with hpt)

� 1 GPU V100, 16G RAM, 5120 cuda cores

Erdem G. YILMAZ SH LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT 9 / 24

Introduction Evaluation Summary

Python & Numpy

Single & multiprocess python

� Regular python looping as a single process, took 2804 sec.

1 total = np.zeros(shape=(lat_size,lon_size))
2 for lat_index in range(lat_size):
3 for lon_index in range(lon_size):
4 acc = 0
5 for i in range(tf_size):
6 acc += precip[i,lat_index,lon_index]
7 total[lat_index][lon_index] = acc
8 return total/tf_size

� Python looping with multiple processes, 30 processes, took 276 sec.

I Why not multi-threading? Global Interpreter Lock (GIL) won’t let you

Erdem G. YILMAZ SH LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT 10 / 24

Introduction Evaluation Summary

Numpy

� Same operation with numpy, took 10 sec.

� Highly optimized C libraries under the hood.

� Has to load all data into memory, not feasible with larger data

1 from netCDF4 import Dataset
2 import numpy as np
3

4 ds = Dataset(filename)
5 precip = np.array(ds.variables["temp"][:])
6 precip.mean(axis=0)

Erdem G. YILMAZ SH LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT 11 / 24

Introduction Evaluation Summary

cupy: numpy like operation with CUDA

� The mean() copy took 0.3sec.

� Easy to work with, seemless gpu use, read+load+calc took 13 sec.

� Requires all data to be loaded onto memory and then copied on to device

� Limiting factor is the file access, otherwise mean() is pretty fast.

1 from netCDF4 import Dataset
2 import numpy as np
3 import cupy as cp
4 ds = Dataset(filename)
5 with cp.cuda.Device(0):
6 temp = cp.array(ds.variables[’temp’][:],copy=True)
7 ds.close()
8 temp_mean_device = temp.mean(axis=0)
9 cp.asnumpy(temp_mean_device)

Erdem G. YILMAZ SH LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT 12 / 24

Introduction Evaluation Summary

C/C++

Single process

� Regular C/C++ code to perform the operation, took 11 sec.

1 for (size_t rec_index = 0; rec_index < timeDimSize; rec_index++)
2 {
3 read_single_rec(precip, rec_index, chunk,....);
4 for (int lat = 0; lat < latDimSize; lat++) {
5 for (int lon = 0; lon < lonDimSize; lon++) {
6 accum[lat][lon] += chunk[lat][long];
7 }
8 }
9 }

I NetCDF-C++ wrapper, regular triple for loop implementation
I What we loose in mean() operation, we gain in file reading

Erdem G. YILMAZ SH LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT 13 / 24

Introduction Evaluation Summary

CUDA Kernel

� Same operation with numpy, took 11 sec.

� Naive approach to GPU programming, heavily synchronized

� File I/O synched, hence not pleasingly parallel

� Under utilized CUDA cores.

CUDA Streaming

� Kernel execution and Host to Device memory copy, took 9 sec.

� cudaDeviceSynchronize() had to be used for result integrity

� When executed with same file on NFS, it took 42 sec.

Erdem G. YILMAZ SH LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT 14 / 24

Introduction Evaluation Summary

CUDA Profiler

Erdem G. YILMAZ SH LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT 15 / 24

Introduction Evaluation Summary

Improved kernel

� With better CUDA core utilisation and removed synchronisation, took 3 sec.

� Host to Device copy took 350ms, kernel execution took 25ms

� Some further optimisation helped with overall timing

I Major: Replacing triple loops with a flat array indexing
I Minor: Use of pinned memory (page-locked memory)

1 for(int k=0; k < part; k++){
2 current_part = k*tcount;
3 float sum = 0;
4 for(int t=0; t < nrec; t++){
5 sum += x[tid + current_part + t * single_rec_size];
6 }
7 accum[current_part+tid] += sum;
8 }

Erdem G. YILMAZ SH LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT 16 / 24

Introduction Evaluation Summary

CUDA Profiler Improved Kernel

Erdem G. YILMAZ SH LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT 17 / 24

Introduction Evaluation Summary

Dask + Xarray

� Took 12 sec.

� Chunkwise operation enables us to work files larger than available mem size

� The chunks read by xarray. Local cluster of size 8 process, 32 threads

� Chunk sizes must be aligned with available memory on nodes.

1 from dask.distributed import Client
2 import xarray as xr
3 client = Client()
4 df = xr.open_dataset(filename,chunks={’time’:128,’lat’:128,’lon’:128})
5 da = df[’temp’].data
6 future = client.compute(da.mean(0)) # returns a future
7 future.result()

Erdem G. YILMAZ SH LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT 18 / 24

Introduction Evaluation Summary

GStreamer

GStreamer as a data processing pipeline

� A framework to move data inside a pipeline from a source to a sink

� Each component implemens a well defined interface

� Generally used for encoded audio/video processing and display

Erdem G. YILMAZ SH LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT 19 / 24

Introduction Evaluation Summary

GStreamer

Two new plugins developed, netcdfsrc and netcdfdemux

� netcdfsrc: reads NetCDF file and sends to demux per timeframe

� netcdfdemux: accumulates incoming records and averages

� Ultimate aim was to interface NVIDIA DeepStream SDK

Erdem G. YILMAZ SH LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT 20 / 24

Introduction Evaluation Summary

NVIDIA DeepStream

� A software SDK that utilizes CUDA through gstreamer interface

� Functionality revolves around video processing from multiple sources

� Pre-trained deep learning models, to detect features in a video stream

Erdem G. YILMAZ SH LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT 21 / 24

Introduction Evaluation Summary

Next Steps

Mid term plans

� Complete the literature survey on workflows and resource mappings

� Interface NVIDIA DeepStream SDK with our NetCDF gstreamer plugins

I Replacing video source with NetCDF file source plugin
I Write a plugin that can process NetCDF content on CUDA hw

� Further tests with GPU and workflow languages (CWL, swift)

� Identify the shortcomings of the previous experiments

Long term plans

� Develop a prototype that is able to

I Layout a workflow to resource mapping through ML model
I Gather metrics and train the ML model

Erdem G. YILMAZ SH LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT 22 / 24

Introduction Evaluation Summary

Summary

� Single proc python call, is horribly slow, took 2804s to complete

� Multiprocessor is relatively faster, took 276s with 30 process, 10x faster

� Numpy took 10 secs, 27x faster than the multiprocessor version

� cupy took 9 secs. as fast as numpy, Device-Host memcpy takes its toll

� C++ and Naive CUDA kernel are almost same with 11s

� Improved CUDA kernel is 3x faster with 3s.

� DASK + xarray, took 12 secs, able to cope with large files

Erdem G. YILMAZ SH LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT 23 / 24

Introduction Evaluation Summary

Summary continued

� DASK performed slower compared to numpy but its distributed

� Numpy is limited with data sizes that can fit on the node’s RAM

� CUDA is a faster alternative provided the problem is pleasingly parallel

� HPC/GPU tuning makes difference, its a complex domain of engineering

Erdem G. YILMAZ SH LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT 24 / 24

	Introduction
	Motivation
	Proposal
	Experiments

	Evaluation
	Setup
	Python & Numpy
	cupy
	C/C++
	Dask
	GStreamer
	DeepStream

	Summary

