
SVE in LLVM
LLVM-CTH @ ISC 2020

Will Lovett – Principal Technical Product Owner

will.lovett@arm.com

@hpc_will

26th June 2020

http://arm.com
https://twitter.com/hpc_will

© 2020 Arm Limited (or its affiliates)

Supercomputer Fugaku: Fastest Supercomputer in the World

3 © 2020 Arm Limited (or its affiliates)

Overview

Important concepts

SVE in LLVM IR

SVE Features in LLVM

Status and roadmap for LLVM

4 © 2020 Arm Limited (or its affiliates)

Overview

Important concepts

SVE in LLVM IR

SVE Features in LLVM

Status and roadmap for LLVM

5 © 2020 Arm Limited (or its affiliates)

Important concepts and further reading

•Scalable vector extension to the Arm v8-a architecture, designed for HPC workloads
•Vector length can be any multiple of 128 bits, up to 2048 bits
•Predicate registers allow conditional execution of individual lanes within the vector
•Find out more

SVE

•Builds upon SVE for usecases outside of HPC
•Adds NEON™-style fixed-point DSP/multimedia plus other new features.
•Tackles further obstacles to compiler auto-vectorization.
•Find out more

SVE2

•Arm C Language Extensions
•C intrinsics that map (roughly) 1-1 with Arm instructions
•ACLE for SVE covers support for SVE, SVE2 and Arm v8.6-a extensions to SVE
•Find out more

ACLE

•The Arm 64-bit architecture
•Find out more

Arm v8-a

•The most recent annual update to the Arm v8-a architecture
•Adds support for bfloat16 and high performance matrix multiplication
•Find out more

Arm v8.6-a

https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-instruction-emulator/resources/tutorials/sve
https://developer.arm.com/docs/ddi0602/e
https://developer.arm.com/architectures/system-architectures/software-standards/acle
https://developer.arm.com/architectures/cpu-architecture/a-profile
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-architecture-developments-armv8-6-a

6 © 2020 Arm Limited (or its affiliates)

• 32 scalable vector registers (Z0-Z31):
• 128-2048 bits vector length is decided by implementation
• Bottom 128 bits are overlaying with the Floating-point & NEON vector register bank (V0-V31)
• Supporting 8-bit, 16-bit, 32-bit, and 64-bit element sizes

• 16 Scalable predicate registers P0-P15:
• Flags that represent whether each vector lane is active
• 1/8th size of vector registers, so can represent the lanes of 8-bit elements
• For vector elements > 8-bit, only the least-significant bit is used

Scalable Vectors and Predication

128 bit

... 128 bit

2048 bit – 128 bit

Vx (NEON)

Zx (SVE)

Px
Zx 8-bit element

32 lanes on A64FX

Px
Zx 32-bit element

16 lanes on A64FX

8-bit 8-bit 8-bit 8-bit … 8-bit 8-bit 8-bit 8-bit

1 1 1 1 … 1 1 1 1

32-bit … 32-bit

1 … 1

7 © 2020 Arm Limited (or its affiliates)

Overview

Important concepts

SVE in LLVM IR

SVE Features in LLVM

Status and roadmap for LLVM

8 © 2020 Arm Limited (or its affiliates)

Teach LLVM IR to understand scalable vectors
How long is a piece of (scalable) string?

1. Add the concept of scalable vectors

2. Fix up VectorType::getNumElements() et al

3. Stack frame layout with scalable sizes

4. Representing shuffles of scalable vectors

Works

In Progress

Work needed

9 © 2020 Arm Limited (or its affiliates)

LLVM IR 1/4: Add the concept of scalable vectors
The problem
• Traditionally, vector size was known at compile-time

• eg. <4 x i32> is a 128-bit vector of 4 32-bit integer values

• With SVE, vector size is now unknown at compile-time
• Some unknown multiple of 128-bits, up to 2048 bits

The solution
• LLVM IR chooses to assume that this value is unknown but constant

• If you break that assumption, you’ve broken the SVE calling convention and you’re on your own

• Extend vector type to include vscale, which represents this unknown constant
• eg. <vscale x 4 x i32> is a vector with a multiple of 4 32-bit integer values
• On a 128-bit implementation of SVE, vscale = 1, and there will be 4 elements
• On a 512-bit implementation of SVE, vscale = 4, and there will be 16 elements

https://static.docs.arm.com/100986/0000/100986_0000.pdf

10 © 2020 Arm Limited (or its affiliates)

LLVM IR 2/4: Fix up VectorType::getNumElements() et al

The problem
unsigned getNumElements() const {return VectorTypeBits.NumElements;}

• This, and other similar accessors are used everywhere

The solution
• Split VectorType into FixedVectorType and ScalableVectorType
• Methodically go through all 787 calls to getNumElements()
• Convert them to use FixedVectorType or to correctly support scalable vectors
• Kudos to Christopher Tetreault from Qualcomm!

11 © 2020 Arm Limited (or its affiliates)

LLVM IR 3/4: Stack frame layout with scalable sizes
The problem
• Traditionally, all values on the stack have a known size in bytes
• So the offset from the stack base of every stack element is a compile-time constant
• We now need to support spilling/filling scalable vectors

The solution
• Add a scalable area to each function’s stack frame
• This area only contains scalable values
• Address calculation becomes

• pointer + offset + offset2 * vscale

12 © 2020 Arm Limited (or its affiliates)

LLVM IR 4/4: Representing shuffles of scalable vectors
The problem
• LLVM needs to represent permute the elements within a vector
• Eg a zip of the even-numbered elements of two <4 x i32> vectors looks like this:

• <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2, <4 x i32> <i32 0, i32 4, i32 1, i32 5> ;

• But how do we construct an index into a vector when we don’t know its length?
• Other uses of shufflevector have similar issues

• splat, reverse, concat, split_lo/hi, zip_lo/hi, unzip_even/odd, splice

The solution
• Undecided upstream!

• Current discussion is around using named shuffle patterns and/or pattern-generating IR intrinsics

• Downstream, we have added additional constants:
• We use constant stepvector and vscale to derive all the access patterns for shufflevector

13 © 2020 Arm Limited (or its affiliates)

Overview

Important concepts

SVE in LLVM IR

SVE Features in LLVM

Status and roadmap for LLVM

14 © 2020 Arm Limited (or its affiliates)

Teach LLVM vectorizer to use SVE features
Leveraging new instructions for fun and profit

1. Per-lane predication
2. Scalar tail removal
3. Multiple exits and unknown tripcounts
4. Loops with gather/scatters
5. Reductions
6. Complex number operations

15 © 2020 Arm Limited (or its affiliates)

SVE features 1/6: Per-lane predication
Allows efficient conditional execution within loops

void foo(char* mask,
double *result,
int n)

{
for (int x = 0; x < n; x++)
if(mask[x] == 0)
result[x] += 2.0;

}

Today
• Supported in LLVM today using select to

filter out inactive lanes in results
• This is incompatible with FP operations that

have side-effects, such as raising an exception
on FP divide-by-zero

Future
• First-class predication support in LLVM IR is a

work is in progress in the community
• Will make it easier to support fully compliant

IEEE FP exception handling

16 © 2020 Arm Limited (or its affiliates)

SVE features 2/6: Scalar tail removal
Introducing WHILELO and friends

• SVE has instructions such as whilelo which test the content of a predicate vector and
set condition codes

• These condition codes can then control conditional branches
• whilelo p1.d, x8, x9

• This allows us to eliminate scalar tail blocks

n+1
0 10 1WHILELO

n n-1 n-2INDEX i
for (i = 0; i < n; ++i)

17 © 2020 Arm Limited (or its affiliates)

SVE features 2/6: Scalar tail removal
SVE example

foo:
// <setup snipped>
.LBB0_2:
ld1d { z0.d }, p1/z, [x0, x8, lsl #3]
fadd z0.d, p0/m, z0.d, #1.0
st1d { z0.d }, p1, [x0, x8, lsl #3]
incd x8
whilelo p1.d, x8, x9
b.first .LBB0_2

.LBB0_3:
ret

void foo (double* a,
unsigned n) {

for (unsigned i=0; i<n; i++)
a[i] += 1.0;

}

Setup

Vector loop

Advantages
• Scalar tail is removed
• Great for code density/icache
Disadvantages
• Adds a whilelo -> b.first dependency

18 © 2020 Arm Limited (or its affiliates)

SVE features 3/6: Multiple exits and unknown tripcounts
Allows vectorization with early exits

void strcpy(char *a, char *b)
{
int i=0;
while (a[i] != 0)
b[i] = a[i];

}

• Loops with unknown tripcounts are traditionally
hard to vectorize

• Vector loads or stores past the end of either
array could trigger a page fault which could
never occur in a scalar implementation

• First-faulting loads and stores in SVE allow a safe
vector implementation

• This is unsupported by LLVM’s vectorizer today
• Easy to implement for library functions using the

ACLE

19 © 2020 Arm Limited (or its affiliates)

SVE features 4/6: gather/scatters and structured accesses
Allows indirect memory accesses within vectorized loops

double lookup_and_sum(double* a,
int* index,
int length) {

double res = 0;
for (int i = 0; i < length; ++i)
res += a[index[i]];

return res;
}

• SVE supports vector loads from a vector of
(calculated) addresses

• Supported in LLVM today
• Cost modeling is overly simplistic

• InterleavedAccessPass replaces gathers/scatters
with interleaved accesses, which are commonly
faster

• Work is needed to update this pass to handle
indexing of scalable vector types

20 © 2020 Arm Limited (or its affiliates)

SVE features 5/6: Horizontal reductions
Allows efficient reduction loops

double sum(double* a, int length) {
double res = 0;
for (int i = 0; i < length; ++i)
res += a[i];

return res;
}

Two options, depending on FP requirements:
1. Strict ordering

• Scalar partial result is updated in each vector
loop iteration

• Significant cost to cross-lane operation within
the vector body

2. Loose ordering
• -fassociative-math -fno-signed-zeros

-fno-trapping-math

• Allows fast vertical reductions within loop
body

• Relatively fast recursive pairwise reduction of
final vector

Both options are fully supported in LLVM

21 © 2020 Arm Limited (or its affiliates)

SVE features 6/6: Complex number operations
Allows efficient operations on complex numbers

double _Complex foo (double _Complex *v,
double _Complex *w,
int n) {

double _Complex result = 0;
for (int i = 0; i < n; ++i)
result += v[i] * w[i];

return result;
}

• SVE supports operations on complex numbers,
operating on pairs of (real, imaginary) lanes

• Can be identified using SLP-style vectorization
with fixed width vectors

• This is more difficult with scalable vectors

• Some work done downstream (not yet
productised)

22 © 2020 Arm Limited (or its affiliates)

SVE features 7*/6: Vector-length Specific SVE support

• Allow LLVM to assume a specific SVE vector width
• Behaviour with a different vector width is undefined

Purpose

• -msve-vector-bits=<length>

Usage:

• Allows LLVM to transparently cast between SVE ACLE types and GNU C/C++ vectors
• This is necessary for storing values within structs and classes
• Likely to be used in some HPC frameworks such as Grid and Kokkos SIMD

ACLE

• Allows LLVM vector IR to codegen to SVE
• Likely to be used by some downstream LLVM compilers

Autovec

* This one isn’t really a feature of SVE!

23 © 2020 Arm Limited (or its affiliates)

Overview

Important concepts

SVE in LLVM IR

SVE Features in LLVM

Status and roadmap for LLVM

24 © 2020 Arm Limited (or its affiliates)

Status and roadmap in LLVM

•SVE/SVE2 assembly and disassembly

LLVM 9 (September 2019)

•SVE/SVE2 intrinsic support
•Stabilisation, stack unwinding, debuginfo
•Armv8.6-a support (bfloat16, matmul)
•Vector-length specific SVE codegen

LLVM 11 (September 2020)

•ACLE code quality improvements (let us know!)
•Vector-length agnostic SVE vectorization of a few simple loops

LLVM 12 (March 2021)

•Full support for Vector-length agnostic SVE vectorization

LLVM 13 (September 2021)

25 © 2020 Arm Limited (or its affiliates)

Contributions welcome!
• Huge thanks to the Arm partners and the wider LLVM community, especially

• Qualcomm
• HPE/Cray
• Fujitsu
• Linaro
• Huawei

• Get involved!
• SVE/SVE2 bi-weekly sync up signup sheet
• Meeting notes from recent calls
• Phabricator patches
• List of identified work items

https://docs.google.com/document/d/1SODSKta18QHofMaZIZWn1PIkieHQTqOGk3W1zu4fnjQ/edit
https://docs.google.com/document/d/1jVUfRcZgORk4_fXVTwVdSgqD9V2oga3_dDWxQsddaAY/edit
https://docs.google.com/document/d/1ph1l1KhrrHgBlrKeEnuoIPrVO9jTjHvcwUlz61QWNMA/edit
https://docs.google.com/document/d/16N34TDcnDcDV29qKcbRHun9lLkRnBWcUL7turRylXas/edit

© 2020 Arm Limited (or its affiliates)

Thank You
Danke
Merci
谢谢

ありがとう
Gracias

Kiitos
감사합니다

ध"यवाद
ارًكش

ধন#বাদ
הדות

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in

the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

© 2020 Arm Limited (or its affiliates)

