
© 2020 Arm Limited (or its affiliates)

Kiran Chandramohan
25 June 2020

OpenMP in Flang
using MLIR

LLVM Compiler and Tools for HPC
ISC-HPC 2020

© 2020 Arm Limited (or its affiliates)

Kiran Chandramohan
25 June 2020

OpenMP in Flang
using MLIR

LLVM Compiler and Tools for HPC
ISC-HPC 2020

2 © 2020 Arm Limited (or its affiliates)

Contents
• Introduction
• Flang compiler flow
• OpenMP support in Flang
• OpenMP plan for Flang

• OpenMP Parse Tree representation
• OpenMP Semantic Checks
• OpenMP Operation Definition
• Lowering to OpenMP dialect
• Lowering to LLVM IR

• Status
• How to get involved

3 © 2020 Arm Limited (or its affiliates)

Introduction
• The Flang Fortran frontend was merged into LLVM on April 9

• Flang started off as the F18 project at Nvidia in collaboration with US DoE
• Arm, AMD and US DoE labs and a few individuals are contributing
• Intends to replace the old Flang project (github.com/flang-compiler/flang)

• Built using modern technologies
• Written in C++17
• Uses MLIR

• Flang is a work in progress
• Currently Flang performs parsing and semantic checks when invoked
• It then unparses to Fortran
• Searches for an external compiler to complete the compilation

– Note: This is for testing

4 © 2020 Arm Limited (or its affiliates)

Flang compiler flow

• Parses Fortran 2018
• Performs semantic checks
• Lowers to a high level IR, FIR
• Uses the MLIR framework
• Come to this later

• Converts to a lower level IR, LLVM MLIR
• Lowers to LLVM IR

Parsing & Semantic
Analysis

Fortran Program

MLIR lowering

Flang Parse Tree

MLIR Dialect Converter

FIR

LLVM MLIR Translation
Library

LLVM MLIR

LLVM IR

5 © 2020 Arm Limited (or its affiliates)

OpenMP support in Flang
• Support for latest OpenMP standards is important in HPC

• Latest published standard is OpenMP 5.0
• OpenMP 5.1 to be announced later this year

• Support for latest OpenMP standards is important for Flang to enter production
• Old Flang (flang-project/flang) has partial support for OpenMP 4.5

• What is supported in Flang now?
• OpenMP 4.5 parsing
• Semantic Checks (in progress)
• Use –fopenmp flag to enable OpenMP

• Uses two components for OpenMP codegen
• MLIR
• OpenMP IRBuilder

6 © 2020 Arm Limited (or its affiliates)

MLIR
• Multi Level Intermediate Representation
• A new approach for building compiler infrastructure

• Can use to build SSA-based Intermediate Representations (IRs)
• Provides a declarative system for defining IRs
• Provides common infrastructure (printing, parsing, location tracking, pass management etc)

• Flang compiler uses the MLIR based FIR dialect as its IR
• FIR models the Fortran language portion

• Does not have a representation for OpenMP constructs

• Add a dialect in MLIR for OpenMP
• MLIR provides common framework for representing OpenMP and Fortran constructs
• Makes OpenMP codegen re-usable

7 © 2020 Arm Limited (or its affiliates)

MLIR

• Operations in the IR can contain regions
• LLVM IR instructions cannot
• Representation in LLVM IR involves outlining

//MLIR

omp.parallel {

%3 = llvm.add %1, %2 : !llvm.float

omp.terminator

}

//LLVM IR

define @outlined_parallel(...)

{
…

%1 = fadd float %2, %3
…

}

call kmpc_fork_call(...,outlined_parallel,...)

8 © 2020 Arm Limited (or its affiliates)

OpenMP IRBuilder
• Generating LLVM IR involves two important tasks

• Inserting calls to OpenMP runtime
• Outlining OpenMP regions

• Code exists in Clang for these tasks.
• Reuse codegen from Clang

• Refactor codegen for OpenMP constructs in Clang and move to the LLVM directory
• llvm/lib/Frontend/OpenMP

9 © 2020 Arm Limited (or its affiliates)

OpenMP plan for Flang

Parsing & Semantic
Analysis

Fortran Program

Flang Parse Tree

MLIR Dialect Converter

FIR

LLVM MLIR

LLVM IR

OpenMP MLIR

MLIR lowering

LLVM MLIR Translation
Library

OpenMP MLIR

MLIR Dialect Converter

OpenMP IRBuilder

10 © 2020 Arm Limited (or its affiliates)

Example : OpenMP Parallel

!Fortran code
!$omp parallel

c = a + b
!$omp end parallel
!More Fortran code

<Fortran parse tree>
| | ExecutionPartConstruct ->
ExecutableConstruct ->
OpenMPConstruct ->
OpenMPBlockConstruct
| | | OmpBlockDirective -> Directive =
Parallel
| | | OmpClauseList ->
| | | Block
| | | | ExecutionPartConstruct ->
ExecutableConstruct -> ActionStmt ->
AssignmentStmt
| | | | | Variable -> Designator ->
DataRef -> Name = 'c’
| | | | | Expr -> Add
| | | | | | Expr -> Designator -> DataRef
-> Name = 'a’
| | | | | | Expr -> Designator -> DataRef
-> Name = 'b’
| | | OmpEndBlockDirective ->
OmpBlockDirective -> Directive =
Parallel <More Fortran parse tree>

Mlir.region(…) {
…
omp.parallel {

%1 = fir.addf %2, %3 : fir.real<32>
}
%21 = <more fir> … }

Fortran source with OpenMP Flang parse tree MLIR: FIR + OpenMP

11 © 2020 Arm Limited (or its affiliates)

Example : OpenMP Parallel

Mlir.region(…)
{
…
omp.parallel {

%1 = llvm.fadd %2, %3 : !llvm.float
}
%21 = <more llvm dialect>
…
}

define @outlined_parallel_fn(...)
{

…
%1 = fadd float %2, %3
...

}
define @xyz(…)
{

%1 = alloca float
....
call

kmpc_fork_call(...,outlined_parallel_fn,...)
}

MLIR: LLVM + OpenMP dialect LLVM IR

Use OpenMP
IRBuilder

12 © 2020 Arm Limited (or its affiliates)

OpenMP plan for Flang

Parsing & Semantic
Analysis

Fortran Program

Flang Parse Tree

MLIR Dialect Converter

FIR

LLVM MLIR

LLVM IR

OpenMP MLIR

MLIR lowering

LLVM MLIR Translation
Library

OpenMP MLIR

MLIR Dialect Converter

OpenMP IRBuilder

13 © 2020 Arm Limited (or its affiliates)

OpenMP Parse Tree representation
• OpenMP constructs are represented in the parse tree as

• Executable Constructs: OpenMPConstruct
• Declarative Constructs: OpenMPDeclarativeConstruct

• Flang uses variants in the parse tree representation

struct OpenMPConstruct {
UNION_CLASS_BOILERPLATE(OpenMPConstruct);

std::variant<OpenMPStandaloneConstruct, OpenMPSectionsConstruct,
OpenMPLoopConstruct, OpenMPBlockConstruct, OpenMPAtomicConstruct,
OpenMPCriticalConstruct>
u;

};

14 © 2020 Arm Limited (or its affiliates)

Flang parse tree with OpenMP

Fortran source Flang Parse tree

program mn
...
!$omp flush(arr)
...
end

Program -> ProgramUnit -> MainProgram
| ProgramStmt -> Name = 'mn'
| SpecificationPart
| | ...
| ExecutionPart -> Block
| | ExecutionPartConstruct -> ExecutableConstruct ->
OpenMPConstruct -> OpenMPStandaloneConstruct ->
OpenMPFlushConstruct
| | | Verbatim
| | | OmpObjectList -> OmpObject -> Designator ->
DataRef -> Name = 'arr'
| | ...
| EndProgramStmt ->

15 © 2020 Arm Limited (or its affiliates)

Flang parse tree with OpenMP: Tooling

• Visitor Class
class OpenMPCounter
{

template<typename A> bool Pre(const A &) { return true; }

template<typename A> void Post(const A &) {}

void Post(const Fortran::parser::OpenMPConstruct &) {counter++;}

int counter{0};

}

• Usage
OpenMPCounter visitor;

void OpenMPStatisticsParseTree(const Fortran::parser::Program &program) {

Fortran::parser::Walk(program, visitor);

}

16 © 2020 Arm Limited (or its affiliates)

OpenMP Semantic Checks
• Checks to ensure that Constructs and Clauses conform to the standard.

• Permitted clauses in a construct
• Clauses not occurring together
• Specifying that expressions evaluate to a positive integer
• Nesting checks

void OmpStructureChecker::Enter(const parser::OpenMPDeclareSimdConstruct &x) {
const auto &dir{std::get<parser::Verbatim>(x.t)};
PushContext(dir.source, OmpDirective::DECLARE_SIMD);
OmpClauseSet allowed{

OmpClause::LINEAR, OmpClause::ALIGNED, OmpClause::UNIFORM};
SetContextAllowed(allowed);
SetContextAllowedOnce({OmpClause::SIMDLEN});
SetContextAllowedExclusive({OmpClause::INBRANCH, OmpClause::NOTINBRANCH});

}

17 © 2020 Arm Limited (or its affiliates)

OpenMP Operation Definition

Parsing & Semantic
Analysis

Fortran Program

Flang Parse Tree

MLIR Dialect Converter

FIR

LLVM MLIR

LLVM IR

OpenMP MLIR

MLIR lowering

LLVM MLIR Translation
Library

OpenMP MLIR

MLIR Dialect Converter

OpenMP IRBuilder

18 © 2020 Arm Limited (or its affiliates)

MLIR: Operation Definition
• Declaratively define OpenMP operations

• Uses tablegen

• Can define the input and output operands
• Whether operations have regions inside them
• Provides generic printers and parsers for operations
• Simple example of barrier operation in the next slide

19 © 2020 Arm Limited (or its affiliates)

OpenMP barrier construct : Definition
def OpenMP_Dialect : Dialect {

let name = "omp";

}

class OpenMP_Op<string mnemonic, list<OpTrait> traits = []> :

Op<OpenMP_Dialect, mnemonic, traits>;

def BarrierOp : OpenMP_Op<"barrier"> {

let summary = "barrier construct";

let description = [{

The barrier construct specifies an explicit barrier at the point at which

the construct appears.

}];

let assemblyFormat = “attr-dict”;
}

20 © 2020 Arm Limited (or its affiliates)

MLIR: Customized Op Definition
• Sometimes custom printers and parsers are required
• This helps to define operations in a domain specific way
• OpenMP clauses are best defined as in a directive
• Clauses can have a variable number of arguments
• Definition of parallel operation in the next slide

• Clauses are modeled as arguments
• Arguments are operands or attributes (constants)
• Most OpenMP clauses are optional
• OpenMP clauses can have a variable number of elements (like variables)

21 © 2020 Arm Limited (or its affiliates)

OpenMP Parallel Construct : Definition
def ParallelOp : OpenMP_Op<"parallel", [AttrSizedOperandSegments]> {

let summary = "parallel construct";

let description = [{ The parallel construct includes a region of code which is to be executed by a team
of threads.}];

let arguments = (ins Optional<AnyType>:$if_expr_var,

Optional<AnyType>:$num_threads_var,

OptionalAttr<ClauseDefault>:$default_val,

Variadic<AnyType>:$private_vars,

Variadic<AnyType>:$firstprivate_vars,

Variadic<AnyType>:$shared_vars,

Variadic<AnyType>:$copyin_vars,

OptionalAttr<ClauseProcBind>:$proc_bind_val);

let regions = (region AnyRegion:$region);

let parser = [{ return parseParallelOp(parser, result); }];

let printer = [{ return printParallelOp(p, *this); }];

}

22 © 2020 Arm Limited (or its affiliates)

OpenMP Parallel : Example

Standard types LLVM dialect types

omp.parallel shared(%data_var : memref<i32>)
copyin(%data_var : memref<i32>,

%data_var : memref<i32>) {
omp.parallel if(%if_cond : i32) {
omp.terminator

}
omp.terminator

}

omp.parallel

num_threads(%num_threads : !llvm.i32)

proc_bind(master) {

omp.terminator

}

23 © 2020 Arm Limited (or its affiliates)

Lowering to OpenMP dialect

Parsing & Semantic
Analysis

Fortran Program

Flang Parse Tree

MLIR Dialect Converter

FIR

LLVM MLIR

LLVM IR

OpenMP MLIR

MLIR lowering

LLVM MLIR Translation
Library

OpenMP MLIR

MLIR Dialect Converter

OpenMP IRBuilder

24 © 2020 Arm Limited (or its affiliates)

Lowering to OpenMP dialect
• Happens along with FIR lowering
• Lowering code in flang/lib/Lower/Bridge.cpp

• Calls code in flang/lib/Lower/OpenMP.cpp

void Fortran::lower::genOpenMPConstruct(
Fortran::lower::AbstractConverter &,
Fortran::lower::pft::Evaluation &,
const Fortran::parser::OpenMPConstruct &)

25 © 2020 Arm Limited (or its affiliates)

Lowering to LLVM IR

Parsing & Semantic
Analysis

Fortran Program

Flang Parse Tree

MLIR Dialect Converter

FIR

LLVM MLIR

LLVM IR

OpenMP MLIR

MLIR lowering

LLVM MLIR Translation
Library

OpenMP MLIR

MLIR Dialect Converter

OpenMP IRBuilder

26 © 2020 Arm Limited (or its affiliates)

Lowering to LLVM IR

convertFunctions convertOneFunction convertBlock convertOperation

• LLVM dialect in MLIR contains a list of functions
• Each function has a list of blocks
• Blocks have a list of operations
• OpenMP operations can have blocks inside

27 © 2020 Arm Limited (or its affiliates)

Lowering to LLVM IR

LogicalResult
ModuleTranslation::convertOmpOperation(Operation &opInst,

llvm::IRBuilder<> &builder) {
if (!ompBuilder) {

ompBuilder = std::make_unique<llvm::OpenMPIRBuilder>(*llvmModule);
ompBuilder->initialize();

}
return llvm::TypeSwitch<Operation *, LogicalResult>(&opInst)

.Case([&](omp::BarrierOp) {
ompBuilder->CreateBarrier(builder.saveIP(), llvm::omp::OMPD_barrier);
return success();

})
.Case([&](omp::TaskwaitOp) {

ompBuilder->CreateTaskwait(builder.saveIP());
return success();

})
…

28 © 2020 Arm Limited (or its affiliates)

OpenMP barrier : Lowering
mlir-translate -mlir-to-llvmir test/Target/openmp-llvm.mlir

llvm.func @empty()
{

omp.barrier

llvm.return

}

define void @empty() !dbg !3
{

%omp_global_thread_num = call i32 @__kmpc_global_thread_num(%struct.ident_t* @2)
call void @__kmpc_barrier(%struct.ident_t* @1, i32 %omp_global_thread_num)
ret void, !dbg !7

}

; Function Attrs: nounwind
declare i32 @__kmpc_global_thread_num(%struct.ident_t*) #0

; Function Attrs: inaccessiblemem_or_argmemonly
declare void @__kmpc_barrier(%struct.ident_t*, i32) #1

attributes #0 = { nounwind }
attributes #1 = { inaccessiblemem_or_argmemonly }

!llvm.dbg.cu = !{!0}
!llvm.module.flags = !{!2}

29 © 2020 Arm Limited (or its affiliates)

Status

• Implementing vertically construct by construct
• Joint work with Nvidia, AMD, ANL, ORNL, LANL, BSC, Arm

Parsing OpenMP 4.5 complete
OpenMP 5.0 in progress
(Flush, Taskwait, Depends)

Semantic Checks Allowed clauses, Exclusive clauses,
Integer properties
Allowed nesting checks

Lowering to OpenMP Dialect Waiting on Bridge code to arrive

OpenMP Dialect and LLVM IR lowering Barrier, Flush, Taskwait, Taskyield
complete
Parallel, Master in progress

OpenMP IRBuilder Parallel and several constructs complete
Sections, Target, Privatisation in progress

30 © 2020 Arm Limited (or its affiliates)

How to get involved

• Project Management via google docs spreadsheet
• Separate sheets for parsing, semantics, OpenMP MLIR, lowerings, OpenMP IRBuilder

• Currently has entries as per OpenMP 5.0
• https://docs.google.com/spreadsheets/d/1FvHPuSkGbl4mQZRAwCIndvQx9dQboffiD-

xD0oqxgU0/edit#gid=0

• Weekly meeting on Thursday (4pm UK time)
• https://docs.google.com/document/d/1yA-MeJf6RYY-ZXpdol0t7YoDoqtwAyBhFLr5thu5pFI/edit

https://docs.google.com/spreadsheets/d/1FvHPuSkGbl4mQZRAwCIndvQx9dQboffiD-xD0oqxgU0/edit
https://docs.google.com/document/d/1yA-MeJf6RYY-ZXpdol0t7YoDoqtwAyBhFLr5thu5pFI/edit

© 2020 Arm Limited (or its affiliates)

Thank You
Danke
Merci
谢谢

ありがとう
Gracias

Kiitos
감사합니다

ध"यवाद
ارًكش

ধন#বাদ
הדות

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in

the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

© 2020 Arm Limited (or its affiliates)

