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What is the container-native paradigm?

Use containers for everything:
•Build software, pre-process data, run experiments, 
analyze results, generate a manuscript, etc.

*other than personal productivity tools such as a text editor, 
  web browser, email reader, calendar app, etc.

If you install software* directly on your machine, then 
you are not following a container-native approach
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$> popper run —-engine podman 
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$> popper run



$> popper run —-resman slurm 



Take away

•The container-native paradigm improves reproducibility 
aspects of experimentation workflows.
•But, as always, there’s no free lunch: working under this 
new paradigm comes with its associated problems
•Popper addresses these in a holistic and user-friendly 
way



Popper as an alternative for minimizing overheads in the 
peer-review process of journal and conference submissions
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Thanks!
github.com/getpopper/popper

http://github.com/getpopper/popper

