
Addressing Practical Aspects of
Container-native Workflows with Popper

Ivo Jimenez
Research Scientist and CROSS Incubator Fellow

UC Santa Cruz

What is a container?

What is a container?

Main benefit of using containers

Bring Your Own Environment (BYOE) to shared infrastructure

Main benefit of using containers

Bring Your Own Environment (BYOE) to shared infrastructure

docker run mattrayner/lamp:latest-1804

Main benefit of using containers

Bring Your Own Environment (BYOE) to shared infrastructure

docker run tensorflow/tensorflow:2.1.1-gpu-jupyter

What is the container-native paradigm?

What is the container-native paradigm?

Use containers for everything:
•Build software, pre-process data, run experiments,
analyze results, generate a manuscript, etc.

What is the container-native paradigm?

Use containers for everything:
•Build software, pre-process data, run experiments,
analyze results, generate a manuscript, etc.

*other than personal productivity tools such as a text editor,
 web browser, email reader, calendar app, etc.

If you install software* directly on your machine, then
you are not following a container-native approach

Practical problems that arise when working
under the container-native paradigm

Practical problems that arise when working
under the container-native paradigm
•Dealing with multi-container workflows

•Complex application testing and prototyping
becomes difficult to reproduce if done by hand

Practical problems that arise when working
under the container-native paradigm
•Dealing with multi-container workflows

•Complex application testing and prototyping
becomes difficult to reproduce if done by hand

•Myriad of container runtimes
•Docker, Podman, LXD, Singularity, Charliecloud, …

Practical problems that arise when working
under the container-native paradigm
•Dealing with multi-container workflows

•Complex application testing and prototyping
becomes difficult to reproduce if done by hand

•Myriad of container runtimes
•Docker, Podman, LXD, Singularity, Charliecloud, …

• Lack of common orchestration platform support
• SLURM, Kubernetes, …

Practical problems that arise when working
under the container-native paradigm
•Dealing with multi-container workflows

•Complex application testing and prototyping
becomes difficult to reproduce if done by hand

•Myriad of container runtimes
•Docker, Podman, LXD, Singularity, Charliecloud, …

• Lack of common orchestration platform support
• SLURM, Kubernetes, …

Practical problems that arise when working
under the container-native paradigm
•Dealing with multi-container workflows

•Complex application testing and prototyping
becomes difficult to reproduce if done by hand

•Myriad of container runtimes
•Docker, Podman, LXD, Singularity, Charliecloud, …

• Lack of common orchestration platform support
• SLURM, Kubernetes, …

8

8

8

8

9https://github.com/getpopper/popper

9https://github.com/getpopper/popper

SCC18: https://github.com/getpopper/seissol-workflows
SCC19: https://github.com/getpopper/normalmodes-workflows

https://github.com/getpopper/seissol-workflows
https://github.com/getpopper/normalmodes-workflows

Practical problems that arise when working
under the container-native paradigm
•Dealing with multi-container workflows

•Complex application testing and prototyping
becomes difficult to reproduce if done by hand

•Myriad of container runtimes
•Docker, Podman, LXD, Singularity, Charliecloud, …

• Lack of common orchestration platform support
• SLURM, Kubernetes, …

$> popper run

$> popper run —-engine podman

Practical problems that arise when working
under the container-native paradigm
•Dealing with multi-container workflows

•Complex application testing and prototyping
becomes difficult to reproduce if done by hand

•Myriad of container runtimes
•Docker, Podman, LXD, Singularity, Charliecloud, …

• Lack of common orchestration platform support
• SLURM, Kubernetes, …

$> popper run

$> popper run —-resman slurm

Take away

•The container-native paradigm improves reproducibility
aspects of experimentation workflows.
•But, as always, there’s no free lunch: working under this
new paradigm comes with its associated problems
•Popper addresses these in a holistic and user-friendly
way

Popper as an alternative for minimizing overheads in the
peer-review process of journal and conference submissions

SCC18: https://github.com/getpopper/seissol-workflows
SCC19: https://github.com/getpopper/normalmodes-workflows

https://github.com/getpopper/seissol-workflows
https://github.com/getpopper/normalmodes-workflows

Thanks!
github.com/getpopper/popper

http://github.com/getpopper/popper

