
LLNL-PRES-811832

Accelerating your application 

I/O with 

LLNL :  KATHRYN  MOHROR ( P I ) ,  ADAM  M OODY,  CAM E RON  S TAN AVIG E ,  TON Y  HU T T E R

OR N L :  SAR P  OR AL  ( OR N L - P I ) ,  HYOG I  S IM ,  F E IY I  WAN G ,  M IKE  B R IM ,  SWE N  B OE HM

NCSA:  CE LS O M E ND ES ,  CR AIG  S T E F F E N

HPC-IODC 2020
June 25, 2020



LLNL-PRES-811832 https://github.com/LLNL/UnifyFS 2

What is UnifyFS?

• Simply put, it’s a file system for 
burst buffers

• Our goal is to make using burst 
buffers on exascale systems as easy
as writing to the parallel file system 
and orders of magnitude faster
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What is UnifyFS?

• Simply put, it’s a file system for 
burst buffers

• Our goal is to make using burst 
buffers on exascale systems as easy
as writing to the parallel file system 
and orders of magnitude faster

• Results on Summit show 
scalable write performance for 
UnifyFS with shared files on burst 
buffers
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Writing data to the parallel file system is expensive

Parallel File System

Cluster B

C
lu

st
er

 A

Cluster C

I/O Nodes

Compute Nodes

Network contention

Contention from other 
clusters for file system

Contention for shared file
system resources

General purpose file 
system semantics
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HPC Storage is becoming more complex
Shared burst buffer model

…...
Local burst buffer model
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HPC Storage is becoming more complex
Shared burst buffer model

Good:
- Easy for applications 

that write shared files
- Easy for 

producer/consumer 
applications 

…...
Local burst buffer model

Good:
- Fast, no contention 

problems
- Potential for excellent 

scaling performance
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HPC Storage is becoming more complex
Shared burst buffer model

Good:
- Easy for applications 

that write shared files
- Easy for 

producer/consumer 
applications 

Bad:
- Not quite as fast as 

node-local
- Contention can be an 

issue

…...
Local burst buffer model

Good:
- Fast, no contention 

problems
- Potential for excellent 

scaling performance

Bad:
- What about shared 

files?
- What about 

producer/consumer 
applications?

UnifyFS target
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UnifyFS targets local burst buffers because they are fast and scalable

300x faster than the 
parallel file system

1000x faster than the 
parallel file system

Atlas Nodes** Lassen Nodes**

**Measurements of local storage performance taken with SCR (The Scalable Checkpoint/Restart Library) https://github.com/llnl/scr

https://github.com/llnl/scr
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UnifyFS makes sharing files on node-local burst buffers easy and fast

• Sharing files on node-local burst buffers is not natively supported

• UnifyFS makes sharing files easy
• UnifyFS presents a shared namespace across distributed storage

• Used directly by applications or indirectly via higher level libraries like VeloC, MPI-IO, HDF5, PnetCDF, ADIOS, etc.

• UnifyFS is fast
• Tailored for specific HPC workloads, e.g., checkpoint/restart, visualization output

• Each UnifyFS instance exists only within a single job, no contention with other jobs on the system

/unifyfs
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UnifyFS is designed to work completely in user space for a single 
user’s job

Checkpoint/Restart Lib: 

SCR, VeloC

Scientific I/O Lib: HDF5, 

MPI-IO, …

HPC Application

(N-1, N-N Checkpointing, Collective I/O with Scientific I/O Libraries)

Standard POSIX I/O

User level I/O interception

Data visible globally after “lamination”

Fast data writes to node local storage

Transer API to move data to/from 

parallel file system

UnifyFS

# Job Script Integration
unifyfs start –mount=/unifyfs
# run applications and tasks... 
unifyfs terminate

Batch Job Manager

Dynamic File System for 

Each Job
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UnifyFS optimizes on typical HPC application I/O behavior

int main(int argc, char* argv[]) {
MPI_Init(argc, argv);

read_input();

for(int t = 0; t < TIMESTEPS; t++)
{
/* ... Do work ... */
/* ... Synchronization ... */

write_output();

}

MPI_Finalize();
return 0;

}
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UnifyFS optimizes on typical HPC application I/O behavior

int main(int argc, char* argv[]) {
MPI_Init(argc, argv);

read_input();

for(int t = 0; t < TIMESTEPS; t++)
{
/* ... Do work ... */
/* ... Synchronization ... */

write_output();

}

MPI_Finalize();
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• Reads and writes occur in distinct phases
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UnifyFS optimizes on typical HPC application I/O behavior

int main(int argc, char* argv[]) {
MPI_Init(argc, argv);

read_input();

for(int t = 0; t < TIMESTEPS; t++)
{
/* ... Do work ... */
/* ... Synchronization ... */

write_output();

}

MPI_Finalize();
return 0;

}

• Reads and writes occur in distinct phases
• Reads and writes are performed to regular offsets in files (not 

random writes or reads)
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UnifyFS optimizes on typical HPC application I/O behavior

int main(int argc, char* argv[]) {
MPI_Init(argc, argv);

read_input();

for(int t = 0; t < TIMESTEPS; t++)
{
/* ... Do work ... */
/* ... Synchronization ... */

write_output();

}

MPI_Finalize();
return 0;

}

• Reads and writes occur in distinct phases
• Reads and writes are performed to regular offsets in files (not 

random writes or reads)
• When reading, a process will most likely access data it wrote
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UnifyFS optimizes on typical HPC application I/O behavior

int main(int argc, char* argv[]) {
MPI_Init(argc, argv);

read_input();

for(int t = 0; t < TIMESTEPS; t++)
{
/* ... Do work ... */
/* ... Synchronization ... */

write_output();

}

MPI_Finalize();
return 0;

}

• Reads and writes occur in distinct phases
• Reads and writes are performed to regular offsets in files (not 

random writes or reads)
• When reading, a process will most likely access data it wrote
• These behaviors are typical of common HPC workloads

• Checkpoint/restart, periodic output, producer/consumer
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UnifyFS files are globally visible after “lamination”

• Based on typical I/O behavior in HPC applications we utilize “lamination semantics”

• Before lamination processes may not see updates written by processes on another node

• Once processes are done modifying a file, they initiate lamination
• The lamination process renders your file read-only and synchronizes file data across nodes in your job

• Now any process on any node can read the final state of the file

• And you can transfer data to external storage
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UnifyFS files are globally visible after “lamination”

• Based on typical I/O behavior in HPC applications we utilize “lamination semantics”

• Before lamination processes may not see updates written by processes on another node

• Once processes are done modifying a file, they initiate lamination
• The lamination process renders your file read-only and synchronizes file data across nodes in your job

• Now any process on any node can read the final state of the file

• And you can transfer data to external storage
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Now for a tutorial…

• get and build UnifyFS

• build your application to use UnifyFS

• run your application with UnifyFS

• move your data between UnifyFS and the parallel file system

/unifyfs
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How do I get and build UnifyFS?

Got Spack?

$ spack install unifyfs

$ spack load unifyfs

https://github.com/spack/spack

https://github.com/spack/spack
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How do I modify my MPI application for UnifyFS?

int main(int argc, char * argv[]) {
FILE *fp;
//program initialization
//MPI setup

//perform I/O
fp = fopen(“/lustre/out.txt”, “w”);
fprintf(fp, “Hello World! I’m rank %d”, rank);
fclose(fp);

//clean up
return 0;

} 
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How do I modify my MPI application for UnifyFS?

int main(int argc, char * argv[]) {
FILE *fp;
//program initialization
//MPI setup

//perform I/O
fp = fopen(“/unifyfs/out.txt”, “w”);
fprintf(fp, “Hello World! I’m rank %d”, rank);
fclose(fp);

// “laminate” the file to indicate to UnifyFS you 
are done modifying this file

chmod(“/unifyfs/out.txt”, 0444);

//clean up
return 0;

} 



LLNL-PRES-811832 https://github.com/LLNL/UnifyFS 22

How do I modify my MPI application for UnifyFS?

int main(int argc, char * argv[]) {
FILE *fp;
//program initialization
//MPI setup

//perform I/O
fp = fopen(“/unifyfs/out.txt”, “w”);
fprintf(fp, “Hello World! I’m rank %d”, rank);
fclose(fp);

// “laminate” the file to indicate to UnifyFS you 
are done modifying this file

chmod(“/unifyfs/out.txt”, 0444);

//clean up
return 0;

} 

• “chmod” is currently supported 
method for lamination

• (Near-)future methods we plan to 
support
• Laminate on close()
• Laminate on unmount() (either 

explicit API call or auto-mount)
• Laminate with API call, e.g., 

unifyfs_laminate
• Expect to be able to specify which 

method you want when you start up 
UnifyFS
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How does UnifyFS intercept I/O calls?

• Static Linking

• Dynamic Linking (Recommended method)
• Using Spack makes this very easy! (just “spack load unifyfs”)

• We use the Gotcha library for dynamic interception

$ mpicc -o hello `<unifyfs>/bin/unifyfs-config --pre-ld-flags` \

hello.c `<unifyfs>/bin/unifyfs-config --post-ld-flags`

$ mpicc -o hello –L<unifyfs>/lib hello.c -lunifyfs_gotcha
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How do I run my code with UnifyFS?

• Easiest method: Start & stop UnifyFS in your batch script

### allocate nodes and options for resource manager
#BSUB –nnodes 8 …
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How do I run my code with UnifyFS?

• Easiest method: Start & stop UnifyFS in your batch script
• Command ‘unifyfs start’ launches UnifyFS for your job and sets up the file system

### allocate nodes and options for resource manager
#BSUB –nnodes 8 …

### shell command portion of batch script
unifyfs start –-share-dir=/shared/file/system/path -–mount=/unifyfs
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### allocate nodes and options for resource manager
#BSUB –nnodes 8 …

### shell command portion of batch script
unifyfs start –-share-dir=/shared/file/system/path -–mount=/unifyfs

/unifyfs
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How do I run my code with UnifyFS?

• Easiest method: Start & stop UnifyFS in your batch script
• Command ‘unifyfs start’ launches UnifyFS for your job and sets up the file system

• Run your command as usual and use the path /unifyfs to direct data to UnifyFS

### allocate nodes and options for resource manager
#BSUB –nnodes 8 …

### shell command portion of batch script
unifyfs start –-share-dir=/shared/file/system/path -–mount=/unifyfs
jsrun –p 4096 ./hello

/unifyfs

hello hello hello hello hello hello hello hello
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How do I run my code with UnifyFS?

• Easiest method: Start & stop UnifyFS in your batch script
• Command ‘unifyfs start’ launches UnifyFS for your job and sets up the file system

• Run your command as usual and use the path /unifyfs to direct data to UnifyFS
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How do I move my data into and out of UnifyFS?
• Three ways to move data between UnifyFS and the parallel file system

• UnifyFS transfer program
• jsrun –r1 transfer /unifyfs/file1 /scratch/mydir/file1

• UnifyFS transfer API
• unifyfs_transfer_file_parallel(“/unifyfs/out.txt”, “/scratch/out.txt”);

• Stage in and out options with UnifyFS command “unifyfs start”
• unifyfs start --stage-in=/path/to/parallel/file/system/inputs --stage-
out=/path/to/parallel/file/system/outputs
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Wanna learn more?

• New features and improvements being 
added all the time

• Documentation and user support
• User Guide: http://unifyfs.readthedocs.io

• Down at the bottom, where it says “Read the Docs” 
chose “v: latest” to get the latest information

• unifyfs@exascaleproject.org

• Example programs available in the 
“examples” directory in the source code

http://unifyfs.readthedocs.io/
mailto:unifyfs@exascaleproject.org
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We need you! 

• Our goal is to provide easy, portable, and fast
support for burst buffers for ECP applications

• We need early users

• What features are most important to you

• Available on github: 
https://github.com/LLNL/UnifyFS
• MIT license

• Documentation and user support
• User Guide: http://unifyfs.readthedocs.io

• unifyfs@exascaleproject.org

https://github.com/LLNL/UnifyFS
http://unifyfs.readthedocs.io/
mailto:ecp-unifycr@exascaleproject.org
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