
LLNL-PRES-811832

Accelerating your application

I/O with

LLNL : KATHRYN MOHROR (P I) , ADAM M OODY, CAM E RON S TAN AVIG E , TON Y HU T T E R

OR N L : SAR P OR AL (OR N L - P I) , HYOG I S IM , F E IY I WAN G , M IKE B R IM , SWE N B OE HM

NCSA: CE LS O M E ND ES , CR AIG S T E F F E N

HPC-IODC 2020
June 25, 2020

LLNL-PRES-811832 https://github.com/LLNL/UnifyFS 2

What is UnifyFS?

• Simply put, it’s a file system for
burst buffers

• Our goal is to make using burst
buffers on exascale systems as easy
as writing to the parallel file system
and orders of magnitude faster

LLNL-PRES-811832 https://github.com/LLNL/UnifyFS 3

What is UnifyFS?

• Simply put, it’s a file system for
burst buffers

• Our goal is to make using burst
buffers on exascale systems as easy
as writing to the parallel file system
and orders of magnitude faster

• Results on Summit show
scalable write performance for
UnifyFS with shared files on burst
buffers

LLNL-PRES-811832 https://github.com/LLNL/UnifyFS 4

Writing data to the parallel file system is expensive

Parallel File System

Cluster B

C
lu

st
er

 A

Cluster C

I/O Nodes

Compute Nodes

Network contention

Contention from other
clusters for file system

Contention for shared file
system resources

General purpose file
system semantics

LLNL-PRES-811832 https://github.com/LLNL/UnifyFS 5

HPC Storage is becoming more complex
Shared burst buffer model

…...
Local burst buffer model

LLNL-PRES-811832 https://github.com/LLNL/UnifyFS 6

HPC Storage is becoming more complex
Shared burst buffer model

Good:
- Easy for applications

that write shared files
- Easy for

producer/consumer
applications

…...
Local burst buffer model

Good:
- Fast, no contention

problems
- Potential for excellent

scaling performance

LLNL-PRES-811832 https://github.com/LLNL/UnifyFS 7

HPC Storage is becoming more complex
Shared burst buffer model

Good:
- Easy for applications

that write shared files
- Easy for

producer/consumer
applications

Bad:
- Not quite as fast as

node-local
- Contention can be an

issue

…...
Local burst buffer model

Good:
- Fast, no contention

problems
- Potential for excellent

scaling performance

Bad:
- What about shared

files?
- What about

producer/consumer
applications?

UnifyFS target

LLNL-PRES-811832 https://github.com/LLNL/UnifyFS 8

UnifyFS targets local burst buffers because they are fast and scalable

300x faster than the
parallel file system

1000x faster than the
parallel file system

Atlas Nodes** Lassen Nodes**

**Measurements of local storage performance taken with SCR (The Scalable Checkpoint/Restart Library) https://github.com/llnl/scr

https://github.com/llnl/scr

LLNL-PRES-811832 https://github.com/LLNL/UnifyFS 9

UnifyFS makes sharing files on node-local burst buffers easy and fast

• Sharing files on node-local burst buffers is not natively supported

• UnifyFS makes sharing files easy
• UnifyFS presents a shared namespace across distributed storage

• Used directly by applications or indirectly via higher level libraries like VeloC, MPI-IO, HDF5, PnetCDF, ADIOS, etc.

• UnifyFS is fast
• Tailored for specific HPC workloads, e.g., checkpoint/restart, visualization output

• Each UnifyFS instance exists only within a single job, no contention with other jobs on the system

/unifyfs

LLNL-PRES-811832 https://github.com/LLNL/UnifyFS 10

UnifyFS is designed to work completely in user space for a single
user’s job

Checkpoint/Restart Lib:

SCR, VeloC

Scientific I/O Lib: HDF5,

MPI-IO, …

HPC Application

(N-1, N-N Checkpointing, Collective I/O with Scientific I/O Libraries)

Standard POSIX I/O

User level I/O interception

Data visible globally after “lamination”

Fast data writes to node local storage

Transer API to move data to/from

parallel file system

UnifyFS

Job Script Integration
unifyfs start –mount=/unifyfs
run applications and tasks...
unifyfs terminate

Batch Job Manager

Dynamic File System for

Each Job

LLNL-PRES-811832 https://github.com/LLNL/UnifyFS 11

UnifyFS optimizes on typical HPC application I/O behavior

int main(int argc, char* argv[]) {
MPI_Init(argc, argv);

read_input();

for(int t = 0; t < TIMESTEPS; t++)
{
/* ... Do work ... */
/* ... Synchronization ... */

write_output();

}

MPI_Finalize();
return 0;

}

LLNL-PRES-811832 https://github.com/LLNL/UnifyFS 12

UnifyFS optimizes on typical HPC application I/O behavior

int main(int argc, char* argv[]) {
MPI_Init(argc, argv);

read_input();

for(int t = 0; t < TIMESTEPS; t++)
{
/* ... Do work ... */
/* ... Synchronization ... */

write_output();

}

MPI_Finalize();
return 0;

}

• Reads and writes occur in distinct phases

LLNL-PRES-811832 https://github.com/LLNL/UnifyFS 13

UnifyFS optimizes on typical HPC application I/O behavior

int main(int argc, char* argv[]) {
MPI_Init(argc, argv);

read_input();

for(int t = 0; t < TIMESTEPS; t++)
{
/* ... Do work ... */
/* ... Synchronization ... */

write_output();

}

MPI_Finalize();
return 0;

}

• Reads and writes occur in distinct phases
• Reads and writes are performed to regular offsets in files (not

random writes or reads)

LLNL-PRES-811832 https://github.com/LLNL/UnifyFS 14

UnifyFS optimizes on typical HPC application I/O behavior

int main(int argc, char* argv[]) {
MPI_Init(argc, argv);

read_input();

for(int t = 0; t < TIMESTEPS; t++)
{
/* ... Do work ... */
/* ... Synchronization ... */

write_output();

}

MPI_Finalize();
return 0;

}

• Reads and writes occur in distinct phases
• Reads and writes are performed to regular offsets in files (not

random writes or reads)
• When reading, a process will most likely access data it wrote

LLNL-PRES-811832 https://github.com/LLNL/UnifyFS 15

UnifyFS optimizes on typical HPC application I/O behavior

int main(int argc, char* argv[]) {
MPI_Init(argc, argv);

read_input();

for(int t = 0; t < TIMESTEPS; t++)
{
/* ... Do work ... */
/* ... Synchronization ... */

write_output();

}

MPI_Finalize();
return 0;

}

• Reads and writes occur in distinct phases
• Reads and writes are performed to regular offsets in files (not

random writes or reads)
• When reading, a process will most likely access data it wrote
• These behaviors are typical of common HPC workloads

• Checkpoint/restart, periodic output, producer/consumer

LLNL-PRES-811832 https://github.com/LLNL/UnifyFS 16

UnifyFS files are globally visible after “lamination”

• Based on typical I/O behavior in HPC applications we utilize “lamination semantics”

• Before lamination processes may not see updates written by processes on another node

• Once processes are done modifying a file, they initiate lamination
• The lamination process renders your file read-only and synchronizes file data across nodes in your job

• Now any process on any node can read the final state of the file

• And you can transfer data to external storage

LLNL-PRES-811832 https://github.com/LLNL/UnifyFS 17

UnifyFS files are globally visible after “lamination”

• Based on typical I/O behavior in HPC applications we utilize “lamination semantics”

• Before lamination processes may not see updates written by processes on another node

• Once processes are done modifying a file, they initiate lamination
• The lamination process renders your file read-only and synchronizes file data across nodes in your job

• Now any process on any node can read the final state of the file

• And you can transfer data to external storage

LLNL-PRES-811832 https://github.com/LLNL/UnifyFS 18

Now for a tutorial…

• get and build UnifyFS

• build your application to use UnifyFS

• run your application with UnifyFS

• move your data between UnifyFS and the parallel file system

/unifyfs

LLNL-PRES-811832 https://github.com/LLNL/UnifyFS 19

How do I get and build UnifyFS?

Got Spack?

$ spack install unifyfs

$ spack load unifyfs

https://github.com/spack/spack

https://github.com/spack/spack

LLNL-PRES-811832 https://github.com/LLNL/UnifyFS 20

How do I modify my MPI application for UnifyFS?

int main(int argc, char * argv[]) {
FILE *fp;
//program initialization
//MPI setup

//perform I/O
fp = fopen(“/lustre/out.txt”, “w”);
fprintf(fp, “Hello World! I’m rank %d”, rank);
fclose(fp);

//clean up
return 0;

}

LLNL-PRES-811832 https://github.com/LLNL/UnifyFS 21

How do I modify my MPI application for UnifyFS?

int main(int argc, char * argv[]) {
FILE *fp;
//program initialization
//MPI setup

//perform I/O
fp = fopen(“/unifyfs/out.txt”, “w”);
fprintf(fp, “Hello World! I’m rank %d”, rank);
fclose(fp);

// “laminate” the file to indicate to UnifyFS you
are done modifying this file

chmod(“/unifyfs/out.txt”, 0444);

//clean up
return 0;

}

LLNL-PRES-811832 https://github.com/LLNL/UnifyFS 22

How do I modify my MPI application for UnifyFS?

int main(int argc, char * argv[]) {
FILE *fp;
//program initialization
//MPI setup

//perform I/O
fp = fopen(“/unifyfs/out.txt”, “w”);
fprintf(fp, “Hello World! I’m rank %d”, rank);
fclose(fp);

// “laminate” the file to indicate to UnifyFS you
are done modifying this file

chmod(“/unifyfs/out.txt”, 0444);

//clean up
return 0;

}

• “chmod” is currently supported
method for lamination

• (Near-)future methods we plan to
support
• Laminate on close()
• Laminate on unmount() (either

explicit API call or auto-mount)
• Laminate with API call, e.g.,

unifyfs_laminate
• Expect to be able to specify which

method you want when you start up
UnifyFS

LLNL-PRES-811832 https://github.com/LLNL/UnifyFS 23

How does UnifyFS intercept I/O calls?

• Static Linking

• Dynamic Linking (Recommended method)
• Using Spack makes this very easy! (just “spack load unifyfs”)

• We use the Gotcha library for dynamic interception

$ mpicc -o hello `<unifyfs>/bin/unifyfs-config --pre-ld-flags` \

hello.c `<unifyfs>/bin/unifyfs-config --post-ld-flags`

$ mpicc -o hello –L<unifyfs>/lib hello.c -lunifyfs_gotcha

LLNL-PRES-811832 https://github.com/LLNL/UnifyFS 24

How do I run my code with UnifyFS?

• Easiest method: Start & stop UnifyFS in your batch script

allocate nodes and options for resource manager
#BSUB –nnodes 8 …

LLNL-PRES-811832 https://github.com/LLNL/UnifyFS 25

How do I run my code with UnifyFS?

• Easiest method: Start & stop UnifyFS in your batch script
• Command ‘unifyfs start’ launches UnifyFS for your job and sets up the file system

allocate nodes and options for resource manager
#BSUB –nnodes 8 …

shell command portion of batch script
unifyfs start –-share-dir=/shared/file/system/path -–mount=/unifyfs

LLNL-PRES-811832 https://github.com/LLNL/UnifyFS 26

How do I run my code with UnifyFS?

• Easiest method: Start & stop UnifyFS in your batch script
• Command ‘unifyfs start’ launches UnifyFS for your job and sets up the file system

allocate nodes and options for resource manager
#BSUB –nnodes 8 …

shell command portion of batch script
unifyfs start –-share-dir=/shared/file/system/path -–mount=/unifyfs

/unifyfs

LLNL-PRES-811832 https://github.com/LLNL/UnifyFS 27

How do I run my code with UnifyFS?

• Easiest method: Start & stop UnifyFS in your batch script
• Command ‘unifyfs start’ launches UnifyFS for your job and sets up the file system

• Run your command as usual and use the path /unifyfs to direct data to UnifyFS

allocate nodes and options for resource manager
#BSUB –nnodes 8 …

shell command portion of batch script
unifyfs start –-share-dir=/shared/file/system/path -–mount=/unifyfs
jsrun –p 4096 ./hello

/unifyfs

hello hello hello hello hello hello hello hello

LLNL-PRES-811832 https://github.com/LLNL/UnifyFS 28

How do I run my code with UnifyFS?

• Easiest method: Start & stop UnifyFS in your batch script
• Command ‘unifyfs start’ launches UnifyFS for your job and sets up the file system

• Run your command as usual and use the path /unifyfs to direct data to UnifyFS

allocate nodes and options for resource manager
#BSUB –nnodes 8 …

shell command portion of batch script
unifyfs start –-share-dir=/shared/file/system/path -–mount=/unifyfs
jsrun –p 4096 ./hello

/unifyfs

hello hello hello hello hello hello hello hello

LLNL-PRES-811832 https://github.com/LLNL/UnifyFS 29

How do I run my code with UnifyFS?

• Easiest method: Start & stop UnifyFS in your batch script
• Command ‘unifyfs start’ launches UnifyFS for your job and sets up the file system

• Run your command as usual and use the path /unifyfs to direct data to UnifyFS

• Command ‘unifyfs terminate’ cleans up the UnifyFS file system and tears it down

allocate nodes and options for resource manager
#BSUB –nnodes 8 …

shell command portion of batch script
unifyfs start –-share-dir=/shared/file/system/path -–mount=/unifyfs
jsrun –p 4096 ./hello
unifyfs terminate

/unifyfs

LLNL-PRES-811832 https://github.com/LLNL/UnifyFS 30

How do I run my code with UnifyFS?

• Easiest method: Start & stop UnifyFS in your batch script
• Command ‘unifyfs start’ launches UnifyFS for your job and sets up the file system

• Run your command as usual and use the path /unifyfs to direct data to UnifyFS

• Command ‘unifyfs terminate’ cleans up the UnifyFS file system and tears it down

allocate nodes and options for resource manager
#BSUB –nnodes 8 …

shell command portion of batch script
unifyfs start –-share-dir=/shared/file/system/path -–mount=/unifyfs
jsrun –p 4096 ./hello
unifyfs terminate

LLNL-PRES-811832 https://github.com/LLNL/UnifyFS 31

How do I move my data into and out of UnifyFS?
• Three ways to move data between UnifyFS and the parallel file system

• UnifyFS transfer program
• jsrun –r1 transfer /unifyfs/file1 /scratch/mydir/file1

• UnifyFS transfer API
• unifyfs_transfer_file_parallel(“/unifyfs/out.txt”, “/scratch/out.txt”);

• Stage in and out options with UnifyFS command “unifyfs start”
• unifyfs start --stage-in=/path/to/parallel/file/system/inputs --stage-
out=/path/to/parallel/file/system/outputs

LLNL-PRES-811832 https://github.com/LLNL/UnifyFS 32

Wanna learn more?

• New features and improvements being
added all the time

• Documentation and user support
• User Guide: http://unifyfs.readthedocs.io

• Down at the bottom, where it says “Read the Docs”
chose “v: latest” to get the latest information

• unifyfs@exascaleproject.org

• Example programs available in the
“examples” directory in the source code

http://unifyfs.readthedocs.io/
mailto:unifyfs@exascaleproject.org

LLNL-PRES-811832 https://github.com/LLNL/UnifyFS 33

We need you!

• Our goal is to provide easy, portable, and fast
support for burst buffers for ECP applications

• We need early users

• What features are most important to you

• Available on github:
https://github.com/LLNL/UnifyFS
• MIT license

• Documentation and user support
• User Guide: http://unifyfs.readthedocs.io

• unifyfs@exascaleproject.org

https://github.com/LLNL/UnifyFS
http://unifyfs.readthedocs.io/
mailto:ecp-unifycr@exascaleproject.org

LLNL-PRES-811832

This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of the U.S. Department of Energy’s
Office of Science and National Nuclear Security Administration, responsible for delivering a capable exascale ecosystem,
including software, applications, and hardware technology, to support the nation’s exascale computing imperative.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-
07NA27344.
This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor
Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore
National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

