
Characterizing I/O Optimization Effect
Through Holistic Log Data Analysis of
Parallel File Systems and Interconnects

Yuichi TSUJITA1, Yoshitaka FURUTANI2, Hajime HIDA3,
Keiji YAMAMOTO1, Atsuya UNO1

1. Center for Computational Science, RIKEN

2. FUJITSU Limited

3. Fujitsu Social Science Laboratory Limited

2

Outline

 Motivation
 Configuration of the K computer
 I/O Activity Analysis Framework at the K computer
 EARTH on K
 Experiments at the K computer
 Summary

Motivation

3

 Performance tuning/monitoring of I/O activities in the HPC systems
 I/O operation is one of the bottlenecks in data-intensive applications.

 At the K computer, I/O performance improvements have been studied, but it
has been difficult to know the reason for the improvements.
 Benchmark evaluation is a common way to know I/O performance values.

 There are no tools to know I/O activities on file systems and data transfer status of
interconnects among I/O nodes at user-side.

 Monitoring the following metrics is quite useful for I/O tuning.
 I/O activities at the file systems

 Packet data transfer status of interconnects among I/O nodes and file systems

4

Configuration of the K computer

K computer and its two-layered file systems

5

 System configuration of the K computer
Operated until Aug. 2019

File systems (LFS and GFS)
 FEFS (Fujitsu Exabyte File System)

based on Lustre ver.1.8

MDS for LFS

Single volume
• 2,592 OSSes
• 5,184 OSTs

8 volumes

Compute nodes and system rack configuration

6

 System rack configuration in the Tofu 6D layout (X, Y, Z, A, B, and C)

• One cabinet consists of
 192 compute nodes
 12 I/O nodes

• 12 OSTs associated with
one cabinet

7

I/O activity analysis framework
at the K computer

Log collection at the K computer

8

 Log collection from the I/O nodes (LIOs, GIOs, and BIOs)
• Tofu stats: Data transfer status of I/O nodes on Tofu links

(per 10 min.)
• I/O stats: Statistics of I/O requests from

/proc/fs/lustre/ost/OSS/ost_io/stats (per 1 min.)
• I/O rates: I/O bandwidth obtained from the amount of sizes

in write and read operations on every OST (per 10 min.)

* OSSes are running on LIO nodes.

System administration

Analysis framework

9

 Analysis framework using log data and job database
PostgreSQL

• Tofu stats
• I/O stats
• I/O rates

Used compute nodes (node-IDs), start/end times, …

metrics

Tofu stats: metrics from Tofu interconnects

10

 Performance counters obtained from Tofu Network Router (TNR) on
every I/O node
 Additional deployment in the remaining few months of the operation

 10 minutes interval collection not to disturb I/O nodes (conservative way)

 Around two months experimental monitoring until the end of the K computer
operation

 Cycle counts until target transfer buffer is available (zero-credit count)
 Cycle counts Waiting time (Congestion status)

 Amount of transferred data size
 Data transfer bandwidth: (transfer size) / (monitoring interval)

 Bandwidth utilization ratio: (data transfer bandwidth) / (theoretical bandwidth)

I/O stats: metrics collected from OSSes

11

 The following three metrics from /proc/fs/lustre/ost/OSS/ost_io/stats
 1 minute interval collection

1. req_qdepth Congestion status
 Lower number is preferable because high number represents I/O request

congestion.

2. req_waittime Congestion status
 Lower number is preferable because high number indicates I/O request

congestion.

3. req_active (number of active I/O threads at OSS) Activities
 High number is preferable because of high activity of I/O threads.

I/O rates: I/O bandwidth at OSTs

12

 Monitoring write and read bandwidth at OSTs
 Amount of size in write/read per 10 minutes from log data collected by

fluentd

 Bandwidth in write/read at each used OST in each 10 minutes interval

 Heatmap generation in the PNG files from the calculated bandwidth
values in 2D layout
 2D layout corresponds to locations of cabinets and OSTs
 Easily find I/O bandwidth distribution and unbalanced I/O bandwidth situation

13

EARTH on K: Enhanced MPI-IO
(ROMIO) at the K computer

EARTH on K (EARTH) *

14

 Enhanced two-phase I/O in ROMIO at the K computer
1. agg: Striping-aware aggregator layout

2. rr: Round-robin aggregator layout among compute nodes

3. req: I/O throttling and associated stepwise data aggregation with a given
number of I/O requests per step (e.g., req=4 indicates 4 requests per step
on each OST.)

 Remaining issues
 A combination of the above parameters outperforms the original MPI-IO at the K

computer, however, it has been quite difficult to find the reason for the
improvements.

 It has been difficult to find good parameter configuration only through empirical
benchmark evaluations.

* Y. Tsujita et al., “Improving Collective MPI-IO Using Topology-Aware Stepwise
Data Aggregation with I/O Throttling” (HPC Asia’18)

I/O characterization by the analysis framework

15

 Providing evidences why the EARTH outperformed the original MPI-
IO in terms of activities in associated system components
 File system, I/O nodes, Interconnects (Tofu), …

 The proposed analysis framework shows
 different activities in I/O operations among the two implementations

 evidences why the EARTH improves I/O performance

16

Experiments at the K computer

Evaluation at the K computer

17

 Performance evaluation of collective MPI-IO using
 Original MPI-IO implementation at the K computer (Original)

 Enhanced MPI-IO implementation named EARTH on K (EARTH)

 Used I/O benchmarks
 IOR

 HPIO

 Comparisons in the evaluations
 Averaged values of req_qdepth, req_waittime, and req_active

 Bandwidth utilization and waiting time of the used Tofu links among I/O nodes

 I/O throughput and load-balancing among OSTs

Benchmark configuration (IOR and HPIO)

18

 Benchmark run by 12,288 processes on 3,072 compute nodes
 Compute node layout: 8x12x32 192 OSTs (96 LIOs)

 3,072 processes were assigned as aggregators

 IOR
 256 MiB in stripe size, 192 in stripe count

 5 iterations in write, followed by the same iterations in read

 Transfer size / Block size: 256 MiB 3 TiB per file per iteration

 HPIO
 64 MiB in stripe size, 192 in stripe count

 6 iterations in write, followed by the same iterations in read

 Region size: 5,992 B, Region space: 256 B, Region count: 30,729

~ 2.1 TiB per file per iteration

$ ior -i 5 -a MPIIO -c -U hints_info -k -m -vvv -w -t 256m -b 256m ¥
-o ${TARGET_DIR}/test-IOR.dat -d 0.1

$ hpio -n 0010 -r 6 -B -s 5992 -c 30729 -p 256 -m 01 -O 11 -f 0 ¥
-S 0 -a 0 -g 2 -H cb_config_list=*:4 -d ${TARGET_DIR} -w 1

Benchmark results

19

 I/O bandwidth results

IOR HPIO

I/O stats of OSSes (IOR)

20

 Averaged values of req_qdepth, req_waittime, and req_active

Lesser congestion Shorter waiting time Higher number of active I/O threads

Lower is better Higher is better

I/O stats of OSSes (HPIO)

21

 Averaged values of req_qdepth, req_waittime, and req_active

Lesser congestion Shorter waiting time Higher number of active I/O threads

Lower is better Higher is better

Status of Tofu links among I/O nodes (IOR)

22

 Averaged values of
 peak bandwidth utilization
 maximum waiting time to start data transfer

High utilization Shorter waiting time

Status of Tofu links among I/O nodes (HPIO)

23

 Averaged values of
 peak bandwidth utilization
 maximum waiting time to start data transfer

Highest utilization Shorter waiting time

I/O rates from used OSTs (IOR)

24

 Write bandwidth heatmaps among used OSTs

Original agg=0,rr=0,req=0 agg=1,rr=1,req=4

Balanced situation
MiB/s

agg=0,rr=0,req=4 agg=1,rr=1,req=16agg=1,rr=0,req=4
Unbalanced situation

I/O rates from used OSTs (IOR)

25

 Read bandwidth heatmaps among used OSTs

Original agg=0,rr=0,req=0 agg=1,rr=1,req=4

Balanced situation
MiB/s

agg=0,rr=0,req=4 agg=1,rr=0,req=4
Unbalanced situation

agg=1,rr=1,req=16

I/O rates from used OSTs (HPIO)

26

 Write bandwidth heatmaps among used OSTs

Original

agg=0,rr=0,req=8

agg=1,rr=1,req=8

Higher I/O throughput with
well-balanced situation

MiB/s

agg=1,rr=1,req=2

agg=0,rr=0,req=0Lower I/O throughput

agg=1,rr=1,req=4

I/O rates from used OSTs (HPIO)

27

 Read bandwidth heatmaps among used OSTs

Original

agg=0,rr=0,req=8

agg=1,rr=1,req=8

Lower I/O throughput or unbalanced situation

Higher I/O throughput with
well-balanced situation

MiB/s

agg=1,rr=1,req=2

agg=0,rr=0,req=0

agg=1,rr=1,req=4

Characterization of I/O (IOR)

28

 Scoring summary from profiled data

I/O case

I/O stats
(ranks from 1)

Tofu stats
(ranks from 1)

Stats SCORE
(lesser is better)

I/O rates
at OSTs

req_qdepth req_waittime req_active BW util. waiting time write read

Original 6 6 1 6 1 4 Unbalanced Unbalanced

agg=0,rr=0,
req=0 4 4 4 5 5 4.4 Unbalanced Unbalanced

agg=0,rr=0,
req=4 1 1 6 4 6 3.6 Unbalanced Unbalanced

agg=1,rr=0,
req=4 2 2 5 2 3 2.4 Unbalanced Unbalanced

agg=1,rr=1,
req=4 3 3 3 1 4 2.4 Balanced Balanced

agg=1,rr=1,
req=16 5 5 2 3 2 3.4 Unbalanced Unbalanced

The lower score number with balanced I/O at OSTs at “agg=1,rr=1,req=4” shows
the good parameter setting.

Characterization of I/O (HPIO)

29

 Scoring summary from profiled data

I/O case

I/O stats
(ranks from 1)

Tofu stats
(ranks from 1)

Stats SCORE
(lesser is better)

I/O rates
at OSTs

req_qdepth req_waittime req_active BW util. waiting time write read

Original 5 6 2 5 1 3.8 Low Balanced

agg=0,rr=0,
req=0 4 5 4 4 2 3.8 Low Unbalanced

agg=0,rr=0,
req=8 1 1 6 2 6 3.2 Low High

agg=1,rr=1,
req=8 3 4 1 1 4 2.6 Balanced Balanced

agg=1,rr=1,
req=2 2 2 5 3 3 3.0 Low Unbalanced

agg=1,rr=1,
req=4 6 3 3 6 5 4.6 Low High

The lower score number with balanced I/O at OSTs at “agg=1,rr=1,req=8” shows
the good parameter setting.

Summary

30

 For I/O characterization, we have implemented an analysis framework
to use the three groups of log data in conjunction with a database
storing job information at the K computer.
 I/O stats of OSSes obtained from /proc/fs/lustre/ost/OSS/ost_io/stats
 Tofu stats (bandwidth utilization and waiting time in each link at used I/O nodes)
 I/O rates at used OSTs

 The analysis framework showed improved activities at file systems,
interconnects, and OSTs associated with the improvements by the
enhanced MPI-IO named EARTH on K in benchmark runs.

 Similar approach will be done on our next HPC system based on
experiences through this work with the following improvements.
 More fine-grained monitoring to support detailed analysis
 Sophisticated database organization for effective utilization of metrics
 Scoring scheme to evaluate I/O throughputs at OSTs

