Characterizing I/O Optimization Effect Through Holistic Log Data Analysis of Parallel File Systems and Interconnects

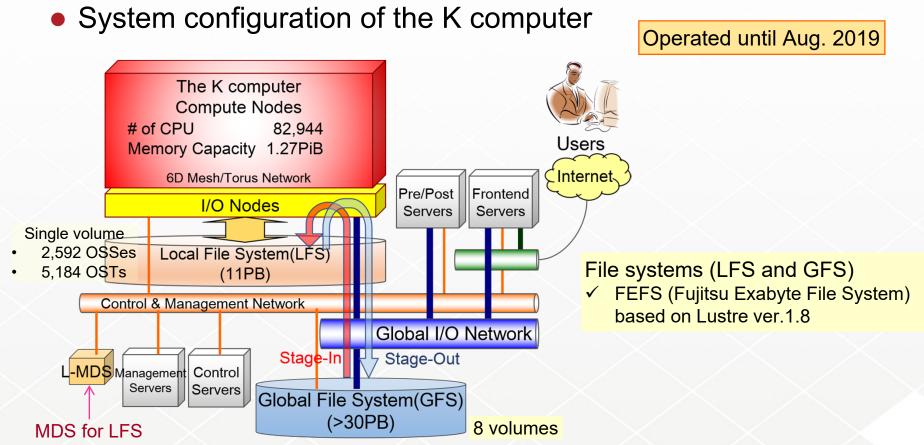
Yuichi TSUJITA¹, Yoshitaka FURUTANI², Hajime HIDA³, Keiji YAMAMOTO¹, Atsuya UNO¹

- 1. Center for Computational Science, RIKEN
- 2. FUJITSU Limited
- 3. Fujitsu Social Science Laboratory Limited

Outline

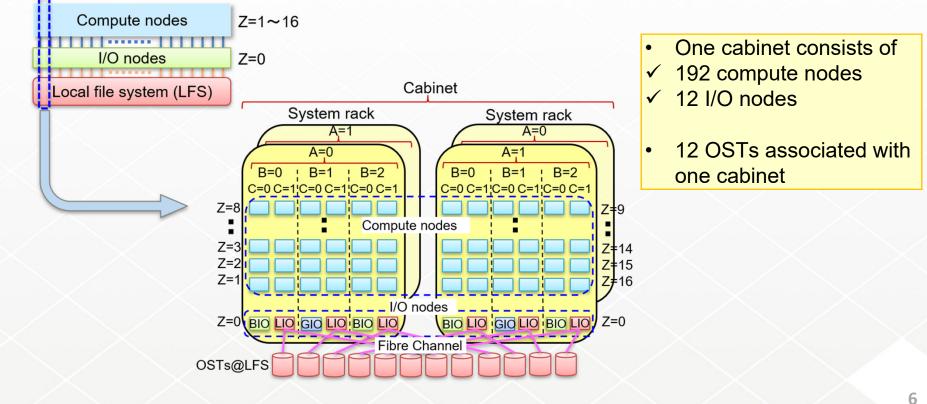
- Motivation
- Configuration of the K computer
- I/O Activity Analysis Framework at the K computer
- EARTH on K
- Experiments at the K computer
- Summary

Motivation



- Performance tuning/monitoring of I/O activities in the HPC systems
 - I/O operation is one of the bottlenecks in data-intensive applications.
 - At the K computer, I/O performance improvements have been studied, but it has been difficult to know the reason for the improvements.
 - > Benchmark evaluation is a common way to know I/O performance values.
 - There are no tools to know I/O activities on file systems and data transfer status of interconnects among I/O nodes at user-side.
- Monitoring the following metrics is quite useful for I/O tuning.
 - I/O activities at the file systems
 - Packet data transfer status of interconnects among I/O nodes and file systems

Configuration of the K computer


K computer and its two-layered file systems

Compute nodes and system rack configuration

• System rack configuration in the Tofu 6D layout (X, Y, Z, A, B, and C)

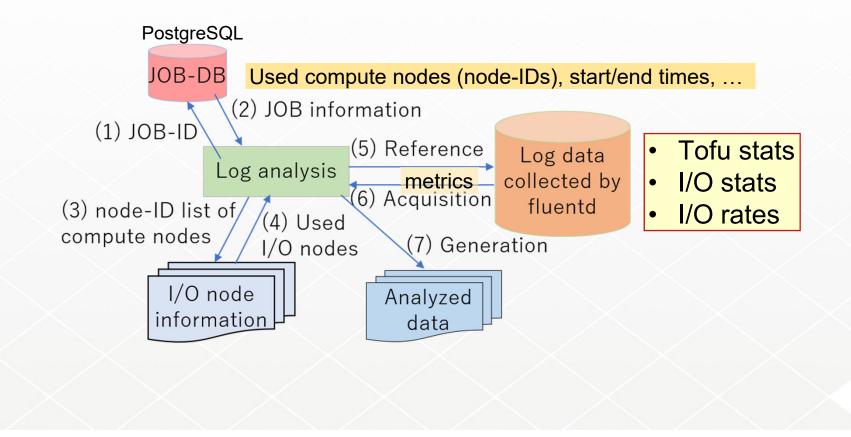
I/O activity analysis framework at the K computer

Log collection at the K computer

Log collection from the I/O nodes (LIOs, GIOs, and BIOs)

•

Tofu stats: Data transfer status of I/O nodes on Tofu links


(per 10 min.) Compute nodes I/O stats: Statistics of I/O requests from ٠ Z=1~16: Compute nodes /proc/fs/lustre/ost/OSS/ost io/stats (per 1 min.) I/O nodes I/O nodes Z=0: **I/O rates**: I/O bandwidth obtained from the amount of sizes ٠ Local file system (LFS) in write and read operations on every OST (per 10 min.) C=1 C=0 C=1 C=1 C=0 C=1 C=0C=0Z=16 Profiling using Tofu PA at compute nodes (@User program) Z=2 Z Z=1 Log collection by fluentd Z=0 Tofu stats 2,592 LIOs (OSSes) Fibre Channel X,Y,A,B,C System administration I/O stats OSTs I/O rates

* OSSes are running on LIO nodes.

Analysis framework

• Analysis framework using log data and job database

Tofu stats: metrics from Tofu interconnects

- Performance counters obtained from Tofu Network Router (TNR) on every I/O node
 - Additional deployment in the remaining few months of the operation
 - **1**0 minutes interval collection <u>not to disturb I/O nodes</u> (conservative way)
 - Around two months experimental monitoring until the end of the K computer operation
 - Cycle counts until target transfer buffer is available (zero-credit count)
 - Cycle counts > Waiting time (Congestion status)
 - Amount of transferred data size
 - Data transfer bandwidth: (transfer size) / (monitoring interval)
 - Bandwidth utilization ratio: (data transfer bandwidth) / (theoretical bandwidth)

I/O stats: metrics collected from OSSes

- The following three metrics from /proc/fs/lustre/ost/OSS/ost_io/stats
 - 1 minute interval collection
 - req_qdepth
 Congestion status
 - Lower number is preferable because high number represents I/O request congestion.
 - req_waittime
 Congestion status
 - Lower number is preferable because high number indicates I/O request congestion.
 - 3. *req_active* (number of active I/O threads at OSS) Activities
 - High number is preferable because of high activity of I/O threads.

I/O rates: I/O bandwidth at OSTs

- Monitoring write and read bandwidth at OSTs
 - Amount of size in write/read per 10 minutes from log data collected by fluentd
 - Bandwidth in write/read at each used OST in each 10 minutes interval
 - Heatmap generation in the PNG files from the calculated bandwidth values in 2D layout
 - 2D layout corresponds to locations of cabinets and OSTs
 - Easily find I/O bandwidth distribution and unbalanced I/O bandwidth situation

EARTH on K: Enhanced MPI-IO (ROMIO) at the K computer

EARTH on K (EARTH) *

Enhanced two-phase I/O in ROMIO at the K computer

- 1. agg: Striping-aware aggregator layout
- 2. rr: Round-robin aggregator layout among compute nodes
- req: I/O throttling and associated stepwise data aggregation with a given number of I/O requests per step (e.g., req=4 indicates 4 requests per step on each OST.)
- Remaining issues
 - A combination of the above parameters outperforms the original MPI-IO at the K computer, however, it has been quite difficult to find the reason for the improvements.
 - It has been difficult to find good parameter configuration only through empirical benchmark evaluations.

* Y. Tsujita et al., "Improving Collective MPI-IO Using Topology-Aware Stepwise Data Aggregation with I/O Throttling" (HPC Asia'18)

I/O characterization by the analysis framework

- Providing evidences why the EARTH outperformed the original MPI-IO in terms of activities in associated system components
 - ✓ File system, I/O nodes, Interconnects (Tofu), ...
- The proposed analysis framework shows
 - different activities in I/O operations among the two implementations
 - evidences why the EARTH improves I/O performance

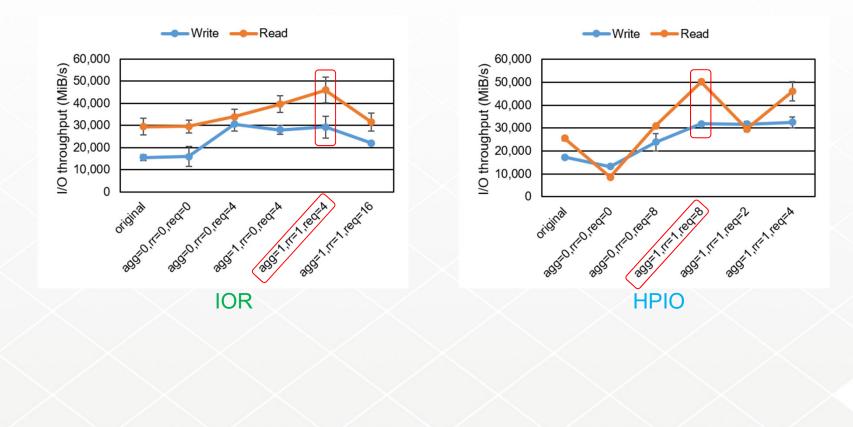
Experiments at the K computer

Evaluation at the K computer

- Performance evaluation of collective MPI-IO using
 - > Original MPI-IO implementation at the K computer (Original)
 - Enhanced MPI-IO implementation named EARTH on K (EARTH)
- Used I/O benchmarks
 - > IOR
 - HPIO
- Comparisons in the evaluations
 - Averaged values of req_qdepth, req_waittime, and req_active
 - > Bandwidth utilization and waiting time of the used Tofu links among I/O nodes
 - I/O throughput and load-balancing among OSTs

Benchmark configuration (IOR and HPIO)

- Benchmark run by 12,288 processes on 3,072 compute nodes
 - Compute node layout: 8x12x32 = 192 OSTs (96 LIOs)
 - > 3,072 processes were assigned as aggregators
- IOR
 \$ ior -i 5 -a MPIIO -c -U hints_info -k -m -vvv -w -t 256m -b 256m ¥ -o \${TARGET_DIR}/test-IOR.dat -d 0.1
 - > 256 MiB in stripe size, 192 in stripe count
 - 5 iterations in write, followed by the same iterations in read
 - Transfer size / Block size: 256 MiB 3 TiB per file per iteration

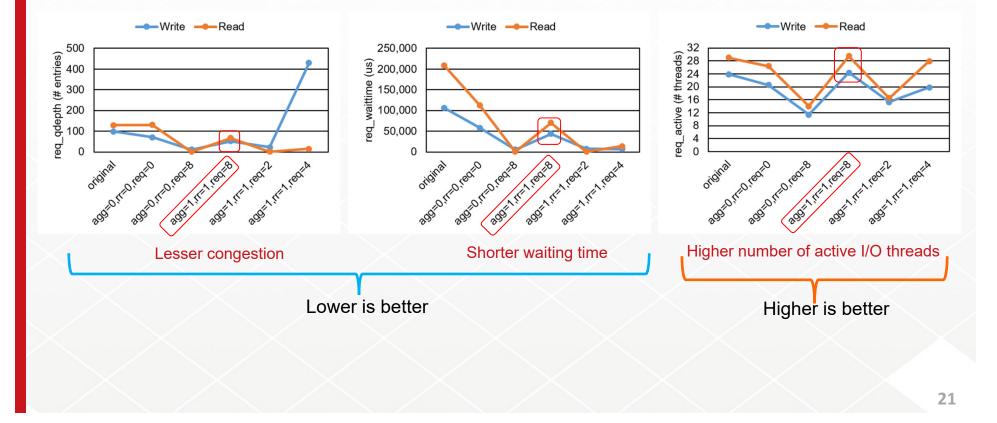

```
HPIO
$ hpio -n 0010 -r 6 -B -s 5992 -c 30729 -p 256 -m 01 -0 11 -f 0 ¥
-s 0 -a 0 -g 2 -H cb_config_list=*:4 -d ${TARGET_DIR} -w 1
```

64 MiB in stripe size, 192 in stripe count
 6 iterations in write, followed by the same iterations in read
 Region size: 5,992 B, Region space: 256 B, Region count: 30,729
 2.1 TiB per file per iteration

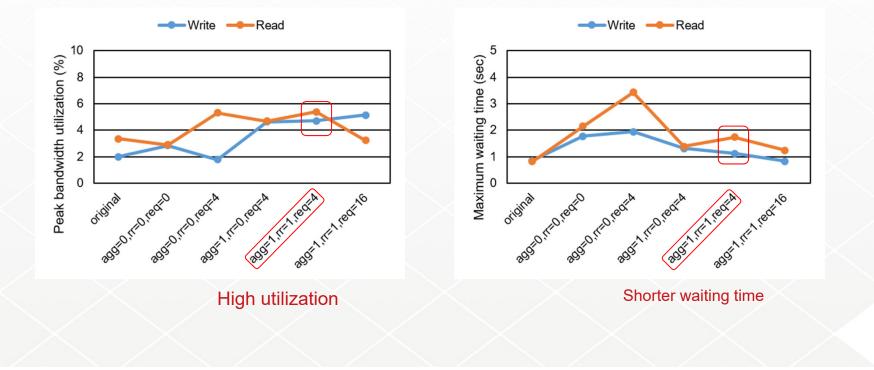
Benchmark results

• I/O bandwidth results

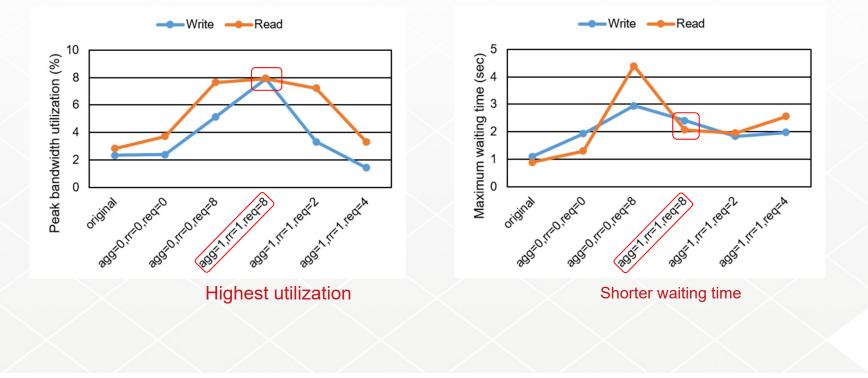
I/O stats of OSSes (IOR)

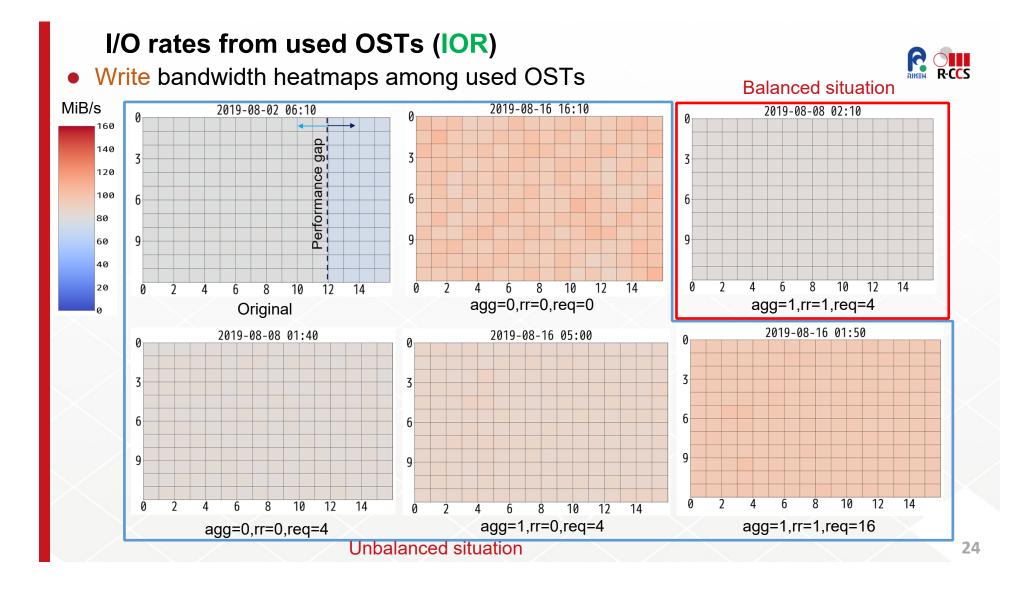

• Averaged values of *req_qdepth*, *req_waittime*, and *req_active*

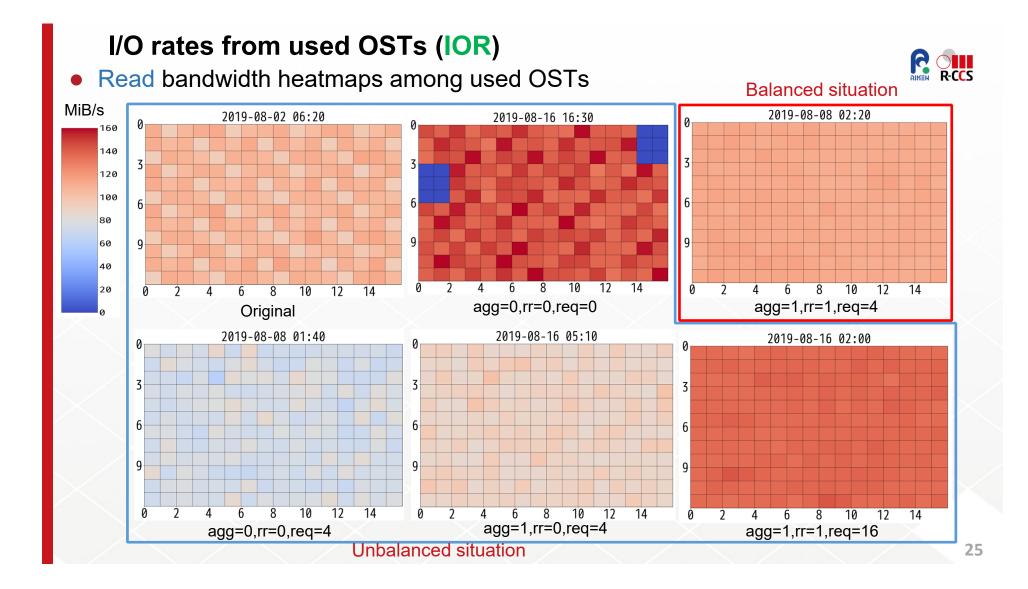
I/O stats of OSSes (HPIO)

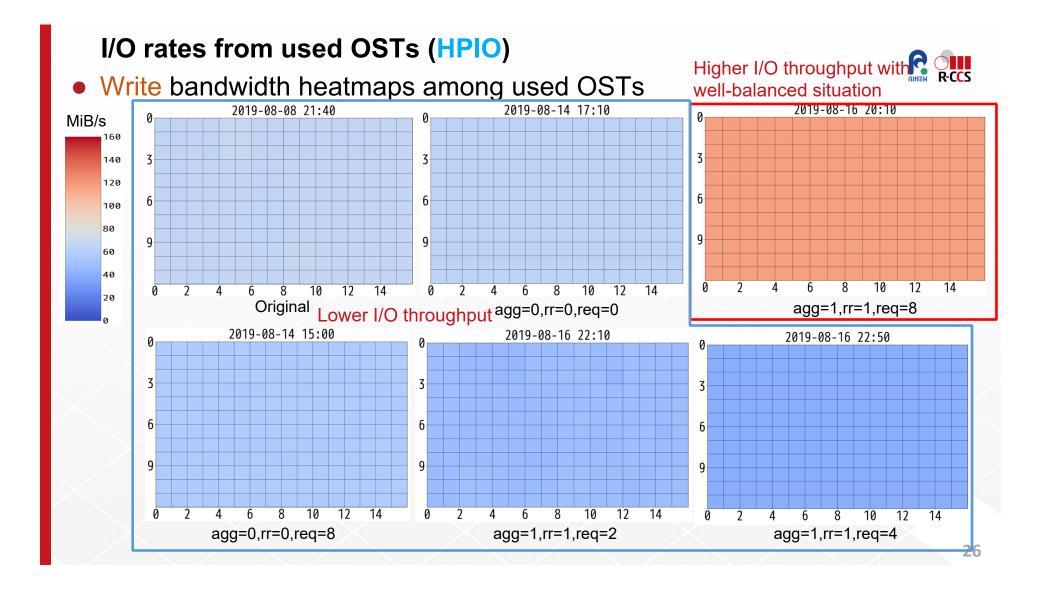


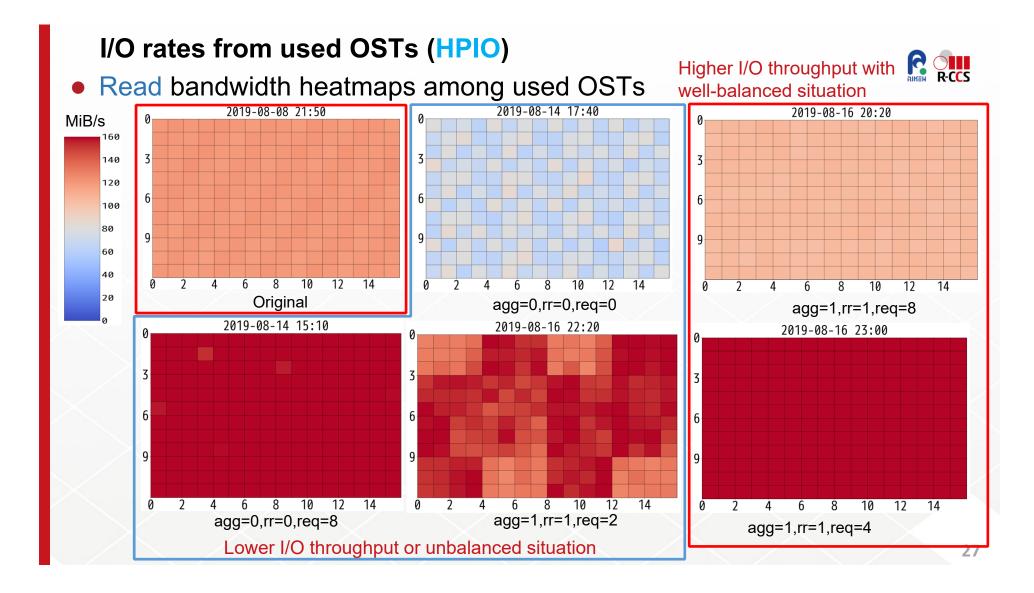
• Averaged values of *req_qdepth*, *req_waittime*, and *req_active*


Status of Tofu links among I/O nodes (IOR)


- Averaged values of
 - peak bandwidth utilization
 - maximum waiting time to start data transfer




Status of Tofu links among I/O nodes (HPIO)


- Averaged values of
 - peak bandwidth utilization
 - maximum waiting time to start data transfer

Characterization of I/O (IOR)

• Scoring summary from profiled data

I/O case	I/O stats (ranks from 1)			Tofu stats (ranks from 1)		Stats SCORE (lesser is better)	I/O rates at OSTs	
	req_qdepth	req_waittime	req_active	BW util.	waiting time		write	read
Original	6	6	1	6	1	4	Unbalanced	Unbalanced
agg=0,rr=0, req=0	4	4	4	5	5	4.4	Unbalanced	Unbalanced
agg=0,rr=0, req=4	1	1	6	4	6	3.6	Unbalanced	Unbalanced
agg=1,rr=0, req=4	2	2	5	2	3	2.4	Unbalanced	Unbalanced
agg=1,rr=1, req=4	3	3	3	1	4	2.4	Balanced	Balanced
agg=1,rr=1, req=16	5	5	2	3	2	3.4	Unbalanced	Unbalanced

The lower score number with balanced I/O at OSTs at "agg=1,rr=1,req=4" shows the good parameter setting.

Characterization of I/O (HPIO)

• Scoring summary from profiled data

I/O case	I/O stats (ranks from 1)			Tofu stats (ranks from 1)		Stats SCORE (lesser is better)	I/O rates at OSTs	
	req_qdepth	req_waittime	req_active	BW util.	waiting time		write	read
Original	5	6	2	5	1	3.8	Low	Balanced
agg=0,rr=0, req=0	4	5	4	4	2	3.8	Low	Unbalanced
agg=0,rr=0, req=8	×1	1	6	2	6	3.2	Low	High
agg=1,rr=1, req=8	3	4	1	<u> </u>	4	2.6	Balanced	Balanced
agg=1,rr=1, req=2	2	2	5	3	3	3.0	Low	Unbalanced
agg=1,rr=1, req=4	6	3	3	6	5	4.6	Low	High

The lower score number with balanced I/O at OSTs at "agg=1,rr=1,req=8" shows the good parameter setting.

Summary

- For I/O characterization, we have implemented an analysis framework to use the three groups of log data in conjunction with a database storing job information at the K computer.
 - I/O stats of OSSes obtained from /proc/fs/lustre/ost/OSS/ost_io/stats
 - Tofu stats (bandwidth utilization and waiting time in each link at used I/O nodes)
 - I/O rates at used OSTs
- The analysis framework showed improved activities at file systems, interconnects, and OSTs associated with the improvements by the enhanced MPI-IO named EARTH on K in benchmark runs.
- Similar approach will be done on our next HPC system based on experiences through this work with the following improvements.
 - More fine-grained monitoring to support detailed analysis
 - Sophisticated database organization for effective utilization of metrics
 - Scoring scheme to evaluate I/O throughputs at OSTs