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Motivation: HPC & Cloud

The convergence between HPC and Cloud  requires an optimal data 
sharing between HPC and cloud resources.

Object storage

● Organizes data into containers of flexible sizes referred to as objects

● Each object includes associated metadata and has a unique ID

● Usually, a simple hash of this ID determines where the object is 

physically located.

● HTTP is the defacto transfer protocol for Cloud storage

This paper

● Evaluates base performance for storing and retrieving objects

○ Compare with the native HPC transfer protocol (MPI)

● Assesses the performance improvements of HTTP2 and HTTP3 in 

the HPC context

●  is available in the JHPS incubator

https://docs.google.com/document/d/1AANE-t3vF5bJffulpWTUE0xKYQQQx-jqxdTBxfbjiPw/edit?usp=sharing


Motivation: Context to Storage

The research conducted here is embedded into my PhD topic

Initially we aimed to measure and discuss pro/cons of cloud 

solutions in the HPC environment

● In particular, understanding performance limitations

It turned out, that basic understanding of the REST API 

performance in the HPC context was not well researched

● HPC software aims to be performance optimized

● Cloud storage scales but doesn’t aim to extract node 

performance

The core idea of this paper was to investigate REST limitations in 

the context of object storage



Methodology

● Assessment of performance 
○ Aim: identify performance bottlenecks
○ Utilize performance counters to measure system performance usage

■ Measure CPU/memory utilization using Likwid on client/server
○ Assess performance relative to machine capabilities
○ Generalize measurements using a performance model

● Experiments
○ Execute benchmarks on two representative clusters 

■ WR: Small research cluster, GBit Ethernet (Cloud environment)
■ Mistral (FDR Infiniband): DKRZ’s supercomputer for climate science

○ Define a REST Benchmark that is integrated with Likwid.
○ Integrate the OSU Micro-Benchmark with Likwid to test MPI.
○ Results Comparison.
○ Investigate the performance of HTTP1.1 vs. HTTP2 vs. HTTP3

● Model Validation: compare predicted results with experimentally observed values



Model

t(request) is the time to complete a request:

t(request) = t(client) + t(network) + t(server) (1)

t(client) = t(compute) + t(memory) + t(queued) (2)

t(server) = t(compute) + t(memory) + t(queued) + t(pending) (3)

After some refinements we end up with:

● α is a weighting factor ( 0 ≤ α < 1 ) [25], βi are platform and protocol-dependent 
● rtt round trip time.
● R: CPU clock rate in Hz.
● CUC: number of unhalted cycles on each core
● L3EV: data volume flowing through L3 cache. L3EVs and L3EVc represent server and client, respectively
● net_tp:effective network throughput



Benchmark Execution

● Server: lighttpd web server
● Benchmark tool: wrk2 via. HTTP
● Data: Files containing randomly generated data
● Storage: Files are stored in tmpfs to minimize influence of storage media
● Likwid is recording the performance counters

Likwid 



Latency-results-wr2

Latency variation in relation to open connections for a file of size 100 KB



Latency-results-wr1

Latency variation in relation to open connections for a file of size 1000 KB

● Latency increases 
with the number of 
open connections 
especially for small 
file.

●  When the file size 
grows beyond a 
certain limit, the 
number of 
connections will 
become irrelevant to 
the already high 
introduced latency.



Latency-results-wr3

Latency Variation in relation to file size for 24 open connections



Latency-results-wr4

Latency Variation in relation to file size for 500 open connections



 Throughput in requests per minute (logarithmic scale) related to object size for different combinations of Open Connections/Threads.

Throughput

● An increase in the 
number of Open 
Connections or in the 
number of threads will 
increase the throughput, 
for file sizes below 1 MB

● Optimize latency and 
throughput = use one or 
a relatively small number 
of open Connections and 
label the web requests 
accordingly= HTTP 
multiplexing



CPU usage for the client and server related to size, for different Open Connections/Threads combinations

Resource Usage Measurements - CPU Cycles



L3 memory evicted volume for the client and server related to size, for different Open Connections/Threads combinations

Resource Usage Measurements

Resource Usage Measurements - Memory



Benchmarks over IB - REST vs. MPI

Mistral,  the High 
Performance Computing 
system for Earth system 
research at the German 
Klima research Center 
DKRZ.



Likwid 

Benchmarks over IB - REST vs. MPI- OSU Micro-Benchmark

osu_get_latency

● RANK1 calls MPI_Get to 
directly fetch data of a certain 
size from the RANK 0 
process's window into a local 
buffer.

● RANK1 waits on a 
synchronization call 
(MPI_Win_complete) for local 
completion of the Gets.

● After several iterations the 
average get latency numbers 
is reported.



Likwid 

REST vs. MPI - OSU Micro-Benchmark

osu_get_bw
● RANK1 calls a fixed number 

of back-to-back MPI_Gets 
and then waiting on a 
synchronization call 
(MPI_Win_complete) 

● After several iterations, the 
bandwidth is calculated 
based on the elapsed time 
and the number of bytes 
received by the origin 
process



REST vs. MPI : Latency and Throughput 

● For small object sizes, the 
latency of REST is higher 

● MPI and REST over TCP have 
similar throughput especially for 
small and large file -> TCP 
Overhead

● MPI performance dip is due to 
eager & rendez-vous

● The system isn’t optimal 
configured



REST vs. MPI : Resource Usage

● Minimal L3EV for  MPI over RDMAoIB because of the direct data transfer
● L3EV for both REST and MPI over TCPoIB is constant for files smaller than 100 KB but increases exponentially afterward
● Higher CPU usage for MPI



Model Evaluation
Hardware and Network Parameters: 

● rtt = 0.06ms 
● mem_tp = 17.088 MB/s
● net_tp = 5.9 GByte/s
● R=2.49 GHz

 βi in our model are calculated using the Excel Regression Tool 

MPIoRDMA

MPIoTCP

RESToTCPoIB



HTTP1.1 vs HTTP2 vs HTTP3 : WR Cluster

● Support for the 3 protocols:
○ Webserver: openlitespeed
○ Benchmark tool: h2load
○ Patched version of OpenSSL provided by the ngtcp2 team

● Binary streams
● Multiplexing single TCP 

connection
● HTTP headers compression
● Server Push

● UDP Based
● Stream multiplexing
● Stream and connection-level flow control
● Low-latency connection establishment
● Connection migration



HTTP1.1 vs HTTP2 vs HTTP3 : WR Cluster

Conclusion: HTTP1.1 and HTTP2 offers similar performance, the one from HTTP3 seems buggy!



HTTP1.1 vs HTTP2 vs HTTP3 : On Mistral, using IB



HTTP1.1 vs HTTP2 vs HTTP3: Resource Usage

A closer look at the evolution of the parameters defined in our model reveals the cause



● An assessment of using REST as an IO protocol in an HPC environment
● A performance model  based on hardware counters is provided and validated
● Same transport protocol is used, i.e., TCP, REST can provide similar latency and throughput 

to MPI while enabling better portability
● Newer versions of the HTTP protocol may have potential to improve performance
● Future Work: validate that REST is a performant and efficient alternative to common HPC 

I/O protocols in an actual HPC scenario 
● Seamless convergence between HPC and Cloud
● Please discuss the paper in the JHPS incubator

Conclusions

https://docs.google.com/document/d/1AANE-t3vF5bJffulpWTUE0xKYQQQx-jqxdTBxfbjiPw/edit?usp=sharing

