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Motivation: HPC & Cloud

The convergence between HPC and Cloud requires an optimal data
sharing between HPC and cloud resources.

Object storage

e Organizes datainto containers of flexible sizes referred to as objects

e Eachobjectincludes associated metadata and has a unique ID

e Usually, asimple hash of this ID determines where the object is
physically located.

e HTTPisthe defacto transfer protocol for Cloud storage

This paper

e Evaluates base performance for storing and retrieving objects
o Compare with the native HPC transfer protocol (MPI)

e Assesses the performance improvements of HTTP2 and HTTP3 in
the HPC context

e isavailableinthe JHPS incubator
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Motivation: Context to Storage
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The core idea of this paper was to investigate REST limitations in
the context of object storage Conclusions?




Methodology

e Assessment of performance
o  Aim: identify performance bottlenecks
o Utilize performance counters to measure system performance usage
m  Measure CPU/memory utilization using Likwid on client/server
o  Assess performance relative to machine capabilities
o  Generalize measurements using a performance model
e Experiments
o  Execute benchmarks on two representative clusters
m  WR: Small research cluster, GBit Ethernet (Cloud environment)
m  Mistral (FDR Infiniband): DKRZ’s supercomputer for climate science
Define a REST Benchmark that is integrated with Likwid.
Integrate the OSU Micro-Benchmark with Likwid to test MPI.
Results Comparison.
Investigate the performance of HTTP1.1 vs. HTTP2 vs. HTTP3
e Model Validation: compare predicted results with experimentally observed values
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Model

t(request) is the time to complete a request:

t(request) = t(client) + t(network) + t(server) (1)
t(client) = t(compute) + t(memory) + t(queued) (2)
t(server) = t(compute) + t(memory) + t(queued) + t(pending) (3)

After some refinements we end up with:

CUC's L3EVs CUCc L3EVc Obj_size
T By gy g D L

a is a weighting factor (0 < a < 1) [23], B,are platform and protocol-dependent
rtt round trip time.

R: CPU clock rate in Hz.

CUC: number of unhalted cycles on each core

L3EV: data volume flowing through L3 cache. L3EVs and L3EVc represent server and client, respectively
net_tp:effective network throughput

t(request) = a-rtt+p-

. mem._tp ' mem _tp > net_tp



Benchmark Execution

i ) : o e (HTTP Benchmark Tool
Different File Sizes with different
Webserver > Threads/Open
Connections
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Server: lighttpd web server

Benchmark tool: wrk2 via. HTTP

Data: Files containing randomly generated data

Storage: Files are stored in tmpfs to minimize influence of storage media
Likwid is recording the performance counters



Latency-results-wr2

—— 1000-100

—— 400-100
—— 500-100
—— 50-100

50000

40000

30000

20000

Latency (milliseconds)

10000

Latency Percentiles

Latency variation in relation to open connections for a file of size 100 KB

1000-100
min = 182.53 ms
median = 15638.53 ms
max = 47906.82 ms
100-100
min = 1.64 ms
median = 10092.54 ms
max = 17088.51 ms
24-100
min = 1.59 ms
median = 6250.49 ms
max = 11337.73 ms
400-100
min = 2236.41 ms iy P s I
median = 15769.60 ms| —
max =/33308.67 ms
500-100 e

Tmin = 1948.67 ms
median = 15974.40 ms
maXx = 38600.70 ms

450-100
min 25% 3058 ms 90% 99% 99.9% 99.99% 99.999%
median = 7118.85 ms Percentile
max = 12124.16 ms

99.9999%




Latency-results-wri

—— 1000-1000 —— 400-1000
—— 100-1000 —— 500-1000
—— 24-1000 — 50-1000

Latency Percentiles

Latency (milliseconds)

60000 { )
(1000-1000 Latency Increases
i | e e s with the number of
median = 33308.67 ms open connections
max = 58720.25 ms .
50000 especially for small
100-1000 file.
mig = 9568.25 ms When the file size
median = 33128.45 ms
max = 56950.78/ms grows beyond a
400001 i limi
—— certain limit, the
------------------ number of
i = 943718 . .
median - 33030.14 ms connections will
max = 56590.33 ms become irrelevant to
30000 .
400-1000 the already high
nin | f 9666.56 ms introduced latency:.
median/= 33488.89 ms
max = 57049.09 ms
20000 {
50821000
min = 9601.02 ms
median = 33456.13 ms
max = 57704.45 ms
10000; 50-1000
min25%= 934T%07 ms 90% 99% 99.9% 99.99% 99.999% 99.9999%
median = 33013.76 ms Percentile

Latency variation in relation to open connections for a file of size 1000 KB




Latency (milliseconds)

Latency-results-wr3

—— 24-1000
—— 24-100

— 24-10

Latency Percentiles

50000+

40000+

300001

20000+

10000

24-1000
min = 9437.18 ms
median = 33030.14 ms
max = 56590.33 ms
24-100
min = 1.59 ms
median = 6250.49/ms
max = 11337.73 ms
24-10
min = 0.55 ms
median = 1.48 ms
max =/ 3.02 ms
/'//
,///
25% 50% 90% 99% 99.9% 99.99% 99.999%
Percentile

Latency Variation in relation to file size for 24 open connections

99.9999%




Latency-results-wr4

—— 500-1000 —— 500-10
~—— 500-100

Latency Percentiles

60000
500-1000
min = 9601.02 ms
median = 33456.13 ms
50000 max = 57704.45 ms
500-100
min = 1948.67 ms
. 40000+ median = 15974.40 ms
3 max = 38600.70 ms -
[ ey
S 500-10 .
/S I [ Y . S
= 30000+ min =  0.56 ms
I median = 455.94 ms -
; max =,8343.55 ms
O sl
=
g
g 200001
/‘/
10000
0_
25% 50% 90% 99% 99.9% 99.99% 99.999% 99.9999%

Percentile
Latency Variation in relation to file size for 500 open connections



Throughput
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Resource Usage Measurements - CPU Cycles
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Resource Usage Measurements - Memory

Resource Usage Measurements
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Benchmarks over IB - REST vs. MPI
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UH
Benchmarks over IB - REST vs. MPI- OSU Micro-Benchmark

osu_get_latency

RANK 0 RANK 1 ° RANK1 calls MPI_Get to
directly fetch data of a certain
size from the RANK 0
process's window into a local

Obj_size
MPI_Get buffer.
e RANK1 waits on a

MPI_Win_compléte synchronization call
(MP1_Win_complete) for local

—

MPI_Win_post
completion of the Gets.
e After several iterations the
average get latency numbers
| is reported.
V

[ Likwid ]




UH
REST vs. MPI - OSU Micro-Benchmark

osu_get_bw
e RANK?1 calls a fixed number

RANK 0 RANK 1 of back-to-back MPI_Gets
and then waiting on a
synchronization call

Obj_size (MP1_Win_complete)
w‘ e After several iterations, the
bandwidth is calculated

MPLWin_compicte based on the elapsed time

MPI_Win_post and the number of bytes
received by the origin
process

| Lil:vid ]
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REST vs. MPI : Latency and Throughput
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REST vs. MPI : Resource Usage

CPU Usage related to obj_size per request L3 evicted Volume related to obj_size per request
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e  Minimal L3EV for MPI over RDMAOIB because of the direct data transfer
e L3EV for both REST and MPI over TCPoIB is constant for files smaller than 100 KB but increases exponentially afterward
e  Higher CPU usage for MPI



Model Evaluation

Hardware and Network Parameters:
e rtt=0.06ms

e mem tp=17.088 MB/s
e net tp=15.9 GByte/s
e R=2.49 GHz

f,in our model are calculated using the Excel Regression Tool
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UH
HTTP1.1 vs HTTP2 vs HTTP3 : WR Cluster

e  Support for the 3 protocols:

o Webserver: openlitespeed
o  Benchmark tool: h2load h 2 l o o d

o  Patched version of OpenSSL provided by the ngtcp2 team

HTTP/2 HTTP/3

UDP Based

Stream multiplexing

Stream and connection-level flow control
Low-latency connection establishment
Connection migration

e Binarystreams

e Multiplexing single TCP
connection

e HTTP headers compression

e Server Push



LATENCY MICROSECONDS

HTTP1.1vs HTTP2 vs HTTP3 : WR Cluster

LATENCY COMPARISON RPS comparison
——[AT-h1 —@—I[AT-h2 =—#&—LAT-h3 3500
1000000
3000
100000 At 2 5500
o
Q
)]
10000 ¥ 2000
(3]
a.
1000 £ 1500
Q
3
o
100 g 1000
500
10
1 1 8 64 512 4096 32768 262144 2097152
1 8 64 512 4096 32768 262144 2097152 o
OBJ_SIZE Obj_size

Conclusion: HTTP1.1 and HTTP2 offers similar performance, the one from HTTP3 seems buggy!

—8—RPS-h1
—@— RPS-h2
®— RPS-h3



HTTP1.1 vs HTTP2 vs HTTP3 : On Mistral, using IB
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HTTP1.1 vs HTTP2 vs HTTP3: Resource Usage

A closer look at the evolution of the parameters defined in our model reveals the cause
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Conclusions

e An assessment of using REST as an IO protocol in an HPC environment

e A performance model based on hardware counters is provided and validated

e Same transport protocol is used, i.e., TCP, REST can provide similar latency and throughput
to MPI while enabling better portability

e Newer versions of the HTTP protocol may have potential to improve performance

e Future Work: validate that REST is a performant and efficient alternative to common HPC
I/O protocols in an actual HPC scenario

e Seamless convergence between HPC and Cloud

®  Please discuss the paper in the JHPS incubator
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