Investigating the Overhead of the REST
Protocol to Reveal the Potential of
Using Cloud Services for HPC Storage

Frank Gadban’, Julian Kunkel?, and Thomas Ludwig®

University of Hamburg, 20146 Hamburg, German y
2 Reading University, Reading,UK
3DKRZ, 20146 Hamburg

Motivation: HPC & Cloud

The convergence between HPC and Cloud requires an optimal data
sharing between HPC and cloud resources.

Object storage

e Organizes datainto containers of flexible sizes referred to as objects

e Eachobjectincludes associated metadata and has a unique ID

e Usually, asimple hash of this ID determines where the object is
physically located.

e HTTPisthe defacto transfer protocol for Cloud storage

This paper

e Evaluates base performance for storing and retrieving objects
o Compare with the native HPC transfer protocol (MPI)

e Assesses the performance improvements of HTTP2 and HTTP3 in
the HPC context

e isavailableinthe JHPS incubator

4

https://docs.google.com/document/d/1AANE-t3vF5bJffulpWTUE0xKYQQQx-jqxdTBxfbjiPw/edit?usp=sharing

UH
Motivation: Context to Storage
The research conducted here is embedded into my PhD topic M Eﬂ% EE@

Initially we aimed to measure and discuss pro/cons of cloud

HDD, SDD,
solutions in the HPC environment thprs

e |nparticular, understanding performance limitations * q\
Oble°‘ SWIFT
.) Storage s ceph Minio X - Quobyte
It turned out, that basic understanding of the REST API
performance in the HPC context was not well researched w
. - [[wwas |
e HPC software aims to be performance optimized { Testing @
Methodologie
e Cloud storage scales but doesn’t aim to extract node : St ‘f‘}

HSDS

performance
L
Factors Scalability

The core idea of this paper was to investigate REST limitations in
the context of object storage Conclusions?

Methodology

e Assessment of performance
o Aim: identify performance bottlenecks
o Utilize performance counters to measure system performance usage
m Measure CPU/memory utilization using Likwid on client/server
o Assess performance relative to machine capabilities
o Generalize measurements using a performance model
e Experiments
o Execute benchmarks on two representative clusters
m WR: Small research cluster, GBit Ethernet (Cloud environment)
m Mistral (FDR Infiniband): DKRZ’s supercomputer for climate science
Define a REST Benchmark that is integrated with Likwid.
Integrate the OSU Micro-Benchmark with Likwid to test MPI.
Results Comparison.
Investigate the performance of HTTP1.1 vs. HTTP2 vs. HTTP3
e Model Validation: compare predicted results with experimentally observed values

O O O O

Model

t(request) is the time to complete a request:

t(request) = t(client) + t(network) + t(server) (1)
t(client) = t(compute) + t(memory) + t(queued) (2)
t(server) = t(compute) + t(memory) + t(queued) + t(pending) (3)

After some refinements we end up with:

CUC's L3EVs CUCc L3EVc Obj_size
T By gy g D L

a is a weighting factor (0 < a < 1) [23], B,are platform and protocol-dependent
rtt round trip time.

R: CPU clock rate in Hz.

CUC: number of unhalted cycles on each core

L3EV: data volume flowing through L3 cache. L3EVs and L3EVc represent server and client, respectively
net_tp:effective network throughput

t(request) = a-rtt+p-

. mem._tp ' mem _tp > net_tp

Benchmark Execution

i) : o e (HTTP Benchmark Tool
Different File Sizes with different
Webserver > Threads/Open
Connections
\ J A combinations)
| |
V2
[Likwid]

Server: lighttpd web server

Benchmark tool: wrk2 via. HTTP

Data: Files containing randomly generated data

Storage: Files are stored in tmpfs to minimize influence of storage media
Likwid is recording the performance counters

Latency-results-wr2

—— 1000-100

—— 400-100
—— 500-100
—— 50-100

50000

40000

30000

20000

Latency (milliseconds)

10000

Latency Percentiles

Latency variation in relation to open connections for a file of size 100 KB

1000-100
min = 182.53 ms
median = 15638.53 ms
max = 47906.82 ms
100-100
min = 1.64 ms
median = 10092.54 ms
max = 17088.51 ms
24-100
min = 1.59 ms
median = 6250.49 ms
max = 11337.73 ms
400-100
min = 2236.41 ms iy P s I
median = 15769.60 ms| —
max =/33308.67 ms
500-100 e

Tmin = 1948.67 ms
median = 15974.40 ms
maXx = 38600.70 ms

450-100
min 25% 3058 ms 90% 99% 99.9% 99.99% 99.999%
median = 7118.85 ms Percentile
max = 12124.16 ms

99.9999%

Latency-results-wri

—— 1000-1000 —— 400-1000
—— 100-1000 —— 500-1000
—— 24-1000 — 50-1000

Latency Percentiles

Latency (milliseconds)

60000 {)
(1000-1000 Latency Increases
i | e e s with the number of
median = 33308.67 ms open connections
max = 58720.25 ms .
50000 especially for small
100-1000 file.
mig = 9568.25 ms When the file size
median = 33128.45 ms
max = 56950.78/ms grows beyond a
400001 i limi
—— certain limit, the
------------------ number of
i = 943718 . .
median - 33030.14 ms connections will
max = 56590.33 ms become irrelevant to
30000 .
400-1000 the already high
nin | f 9666.56 ms introduced latency:.
median/= 33488.89 ms
max = 57049.09 ms
20000 {
50821000
min = 9601.02 ms
median = 33456.13 ms
max = 57704.45 ms
10000; 50-1000
min25%= 934T%07 ms 90% 99% 99.9% 99.99% 99.999% 99.9999%
median = 33013.76 ms Percentile

Latency variation in relation to open connections for a file of size 1000 KB

Latency (milliseconds)

Latency-results-wr3

—— 24-1000
—— 24-100

— 24-10

Latency Percentiles

50000+

40000+

300001

20000+

10000

24-1000
min = 9437.18 ms
median = 33030.14 ms
max = 56590.33 ms
24-100
min = 1.59 ms
median = 6250.49/ms
max = 11337.73 ms
24-10
min = 0.55 ms
median = 1.48 ms
max =/ 3.02 ms
/'//
,///
25% 50% 90% 99% 99.9% 99.99% 99.999%
Percentile

Latency Variation in relation to file size for 24 open connections

99.9999%

Latency-results-wr4

—— 500-1000 —— 500-10
~—— 500-100

Latency Percentiles

60000
500-1000
min = 9601.02 ms
median = 33456.13 ms
50000 max = 57704.45 ms
500-100
min = 1948.67 ms
. 40000+ median = 15974.40 ms
3 max = 38600.70 ms -
[ey
S 500-10 .
/S I [Y . S
= 30000+ min = 0.56 ms
I median = 455.94 ms -
; max =,8343.55 ms
O sl
=
g
g 200001
/‘/
10000
0_
25% 50% 90% 99% 99.9% 99.99% 99.999% 99.9999%

Percentile
Latency Variation in relation to file size for 500 open connections

Throughput

1M QG

Open Connections/Number of Threads:
240/1 240/24

G—

100k

10k

Requests per Minute

1k

100

10

10000000

Size in Bytes

m
n

An increase in the
number of Open
Connections or in the
number of threads will
increase the throughput,
for file sizes below 1 MB
Optimize latency and
throughput = use one or
a relatively small number
of open Connections and
label the web requests
accordingly= HTTP
multiplexing

Throughput in requests per minute (logarithmic scale) related to object size for different combinations of Open Connections/Threads.

Resource Usage Measurements - CPU Cycles

CPU_CLK_UNHALTED_CORE

o X

10000000
Open Conn/Number of Threads 1/1 10/1 240/1 240/24

5000000 ciet ® © °

Server X

X

1000000
500000
100000 e e
50000 N
e :“x
Prrmrrnnnarnsbusnannannans)(..’:‘,:,, _____ oo
10 1000 100000 170000000

Size in Bytes
CPU usage for the client and server related to size, for different Open Connections/Threads combinations

UH
Resource Usage Measurements - Memory

Resource Usage Measurements

10M

Open Conn/Number of Threads 1/1 10/1 240/1 240/24

Client ® @ []

Server x X X

L3EV

10 1k Size in Bytes 100k 0M

L3 memory evicted volume for the client and server related to size, for different Open Connections/Threads combinations

Benchmarks over IB - REST vs. MPI

DKRZ HLRE-3 supercomputer MISTRAL
SX6536 director switch | T

Mistral, the High

Performance Computing
system for Earth system
research at the German

Klima research Center
DKRZ.

spine module, 36 ports
spine module, 36 ports

2
g
R
£
2
£
:
5

2:1 blocking

2 leal module,, 18 portsin, 9 ports out

(= lleal module,, 18 portsin, 9 ports out

[}
[
1
1
!
|}
oy
ot
e
1
1
[
[}
I
I
I
I
[

3x 4X FDR per director switch
bultx DLCB700 bultx DLC B700 bullx DLCB700 bullx DLCB700 bult DLCB700
FOR switch FDR switch FOR switch FOR switch H FOR switch
S K 2 S 168 bullx DLC B700 chassis S
= 3024 nodes

bulix 8720 DLC compute node

UH
Benchmarks over IB - REST vs. MPI- OSU Micro-Benchmark

osu_get_latency

RANK 0 RANK 1 ° RANK1 calls MPI_Get to
directly fetch data of a certain
size from the RANK 0
process's window into a local

Obj_size
MPI_Get buffer.
e RANK1 waits on a

MPI_Win_compléte synchronization call
(MP1_Win_complete) for local

—

MPI_Win_post
completion of the Gets.
e After several iterations the
average get latency numbers
| is reported.
V

[Likwid]

UH
REST vs. MPI - OSU Micro-Benchmark

osu_get_bw
e RANK?1 calls a fixed number

RANK 0 RANK 1 of back-to-back MPI_Gets
and then waiting on a
synchronization call

Obj_size (MP1_Win_complete)
w‘ e After several iterations, the
bandwidth is calculated

MPLWin_compicte based on the elapsed time

MPI_Win_post and the number of bytes
received by the origin
process

| Lil:vid]

UH
REST vs. MPI : Latency and Throughput

A |atency REST @ Latency MPIoRDMA LatencyMPloTCP
5000,0 /
E B e For small object sizes, the
£1000,0 latency of REST is higher
o
g 500,0 e MPIl and REST over TCP have
= similar throughput especially for
g small and large file -> TCP
3 1000
5 Overhead
50 D i
b8 e MPI performance dip is due to
10 1000 100000 10000000 eager & rendez-vous
: (Rt atzeiin. Bules e The system isn’'t optimal
A TPREST @ TP MPI TP MPloTCP :
configured
«000,0 - A
)
21000
=2
Q
£ 100
=
o
£ 10
-
10 1000 100000 10000000

Obj_size in Bytes

REST vs. MPI : Resource Usage

CPU Usage related to obj_size per request L3 evicted Volume related to obj_size per request
@ CuCsRest 5000000 @ L3eVCREST
A |3eVs MPIoR
@ CUCCREST
1000000 A [3eVc MPIoR
'E'n:J P PUCE MER @ L3eVs MPIoTCP
G 500000 1000000
(&) A CUCcMPIoR = @ L3eVc MPIOTCP
o' £ 500000 ° s
H € CUCs MPIloTCP 2 L3eVs
%I & CUCc MPloTCP 8
% 100000 §
Ul s 100000
6' BOUH % 50000
Dl]
o
o
10000 10000
10 1000 100000 10000000 10 1000 100000 10000000
obj_size obj_size

e Minimal L3EV for MPI over RDMAOIB because of the direct data transfer
e L3EV for both REST and MPI over TCPoIB is constant for files smaller than 100 KB but increases exponentially afterward
e Higher CPU usage for MPI

Model Evaluation

Hardware and Network Parameters:
e rtt=0.06ms

e mem tp=17.088 MB/s
e net tp=15.9 GByte/s
e R=2.49 GHz

f,in our model are calculated using the Excel Regression Tool

RESToTCPolB

Hraquast) — Th CUC's L6 L3EV's N CUCc N L3EVc _|_§ Obj_size
1 B Rs mem_tp Rc mem_tp 2 net_tp
MPIloTCP

CUCs L3EVs CUCc L3EVc Obj_size
t(request) = 0.1-rtt+ + + +2.7-
Rs mem _tp Rc mem_tp net_tp

MPIoRDMA

{ aaf) 1 CUCs 4 L3EV s 5 1 CUCc L3EVce Obj_size
request) = — - — -

‘ 2 Rs mem_tp 2 Rc

mem_tp

net_tp

(11)

(12)

(13)

UH
HTTP1.1 vs HTTP2 vs HTTP3 : WR Cluster

e Support for the 3 protocols:

o Webserver: openlitespeed
o Benchmark tool: h2load h 2 l o o d

o Patched version of OpenSSL provided by the ngtcp2 team

HTTP/2 HTTP/3

UDP Based

Stream multiplexing

Stream and connection-level flow control
Low-latency connection establishment
Connection migration

e Binarystreams

e Multiplexing single TCP
connection

e HTTP headers compression

e Server Push

LATENCY MICROSECONDS

HTTP1.1vs HTTP2 vs HTTP3 : WR Cluster

LATENCY COMPARISON RPS comparison
——[AT-h1 —@—I[AT-h2 =—#&—LAT-h3 3500
1000000
3000
100000 At 2 5500
o
Q
)]
10000 ¥ 2000
(3]
a.
1000 £ 1500
Q
3
o
100 g 1000
500
10
1 1 8 64 512 4096 32768 262144 2097152
1 8 64 512 4096 32768 262144 2097152 o
OBJ_SIZE Obj_size

Conclusion: HTTP1.1 and HTTP2 offers similar performance, the one from HTTP3 seems buggy!

—8—RPS-h1
—@— RPS-h2
®— RPS-h3

HTTP1.1 vs HTTP2 vs HTTP3 : On Mistral, using IB

LATENCY COMPARISON

RPS comparison

—4—|AT-h1 ==|AT-h2 =—d—[AT-h3
100000000
10000000
. o
2 1000000 o
= o
o e n
— 100000 fr—pliemdi—irfrmird—r s, S
8 o —e—RPS-h1
< 12l
= 10000 ga —8—RPS-h2
=3 =]
g 1000 g »— RPS-h3
B
g 100
10 0 6eo D8 ®© & 0 S0 060 0 ¢ e 6 08
1 8 64 512 4096 32768 262144 2097152
1 .
1 8 64 512 4096 32768 262144 2097152 Obj_size
OBJ_SIZE

Fig. 17. Throughput results for the differ-

Fig. 16. Latency results for the different ¢ protocols

protocols

UH
HTTP1.1 vs HTTP2 vs HTTP3: Resource Usage

A closer look at the evolution of the parameters defined in our model reveals the cause

CUC COMPARISON L3EV COMPARISON
o CUC-h1 =l CUC-h? e CUC-h3 =#=—[3EV-h1 ==fll=[3EV-h2 ==de=LLOD-h3
1E+09 100000000
100000000 o 10000000
10000000 - 1000000
1000000 o 100000
O 100000 S :
3 s 10000
© 10000 q
1000 1000
100 100
10 10
! 1
L 76 5 G2
1 8 64 512 4096 32768 262144 2097152 g 3 i 53 P
OBJ_SIZE
- OBJ_SIZE

Fig. 18. Client CPU Consumption for the

Fig. 19. Client Memory consumption for
different protocols

the different protocols

. UH
Conclusions

e An assessment of using REST as an IO protocol in an HPC environment

e A performance model based on hardware counters is provided and validated

e Same transport protocol is used, i.e., TCP, REST can provide similar latency and throughput
to MPI while enabling better portability

e Newer versions of the HTTP protocol may have potential to improve performance

e Future Work: validate that REST is a performant and efficient alternative to common HPC
I/O protocols in an actual HPC scenario

e Seamless convergence between HPC and Cloud

® Please discuss the paper in the JHPS incubator

ANKSCHEEN
IVAN
SHUKRIA

GRAC IAS“"““"“' HANK
AR IGATO _gg
5 EFCAARISTO ~w§ gg

BOLZIN mMERCI

JUSPAX

https://docs.google.com/document/d/1AANE-t3vF5bJffulpWTUE0xKYQQQx-jqxdTBxfbjiPw/edit?usp=sharing

