
Investigating the Overhead of the REST
Protocol to Reveal the Potential of

Using Cloud Services for HPC Storage

Frank Gadban1, Julian Kunkel2, and Thomas Ludwig3

1University of Hamburg, 20146 Hamburg, Germany
2

 Reading University, Reading,UK
3DKRZ, 20146 Hamburg

Motivation: HPC & Cloud

The convergence between HPC and Cloud requires an optimal data
sharing between HPC and cloud resources.

Object storage

● Organizes data into containers of flexible sizes referred to as objects

● Each object includes associated metadata and has a unique ID

● Usually, a simple hash of this ID determines where the object is

physically located.

● HTTP is the defacto transfer protocol for Cloud storage

This paper

● Evaluates base performance for storing and retrieving objects

○ Compare with the native HPC transfer protocol (MPI)

● Assesses the performance improvements of HTTP2 and HTTP3 in

the HPC context

● is available in the JHPS incubator

https://docs.google.com/document/d/1AANE-t3vF5bJffulpWTUE0xKYQQQx-jqxdTBxfbjiPw/edit?usp=sharing

Motivation: Context to Storage

The research conducted here is embedded into my PhD topic

Initially we aimed to measure and discuss pro/cons of cloud

solutions in the HPC environment

● In particular, understanding performance limitations

It turned out, that basic understanding of the REST API

performance in the HPC context was not well researched

● HPC software aims to be performance optimized

● Cloud storage scales but doesn’t aim to extract node

performance

The core idea of this paper was to investigate REST limitations in

the context of object storage

Methodology

● Assessment of performance
○ Aim: identify performance bottlenecks
○ Utilize performance counters to measure system performance usage

■ Measure CPU/memory utilization using Likwid on client/server
○ Assess performance relative to machine capabilities
○ Generalize measurements using a performance model

● Experiments
○ Execute benchmarks on two representative clusters

■ WR: Small research cluster, GBit Ethernet (Cloud environment)
■ Mistral (FDR Infiniband): DKRZ’s supercomputer for climate science

○ Define a REST Benchmark that is integrated with Likwid.
○ Integrate the OSU Micro-Benchmark with Likwid to test MPI.
○ Results Comparison.
○ Investigate the performance of HTTP1.1 vs. HTTP2 vs. HTTP3

● Model Validation: compare predicted results with experimentally observed values

Model

t(request) is the time to complete a request:

t(request) = t(client) + t(network) + t(server) (1)

t(client) = t(compute) + t(memory) + t(queued) (2)

t(server) = t(compute) + t(memory) + t(queued) + t(pending) (3)

After some refinements we end up with:

● α is a weighting factor (0 ≤ α < 1) [25], βi are platform and protocol-dependent
● rtt round trip time.
● R: CPU clock rate in Hz.
● CUC: number of unhalted cycles on each core
● L3EV: data volume flowing through L3 cache. L3EVs and L3EVc represent server and client, respectively
● net_tp:effective network throughput

Benchmark Execution

● Server: lighttpd web server
● Benchmark tool: wrk2 via. HTTP
● Data: Files containing randomly generated data
● Storage: Files are stored in tmpfs to minimize influence of storage media
● Likwid is recording the performance counters

Likwid

Latency-results-wr2

Latency variation in relation to open connections for a file of size 100 KB

Latency-results-wr1

Latency variation in relation to open connections for a file of size 1000 KB

● Latency increases
with the number of
open connections
especially for small
file.

● When the file size
grows beyond a
certain limit, the
number of
connections will
become irrelevant to
the already high
introduced latency.

Latency-results-wr3

Latency Variation in relation to file size for 24 open connections

Latency-results-wr4

Latency Variation in relation to file size for 500 open connections

 Throughput in requests per minute (logarithmic scale) related to object size for different combinations of Open Connections/Threads.

Throughput

● An increase in the
number of Open
Connections or in the
number of threads will
increase the throughput,
for file sizes below 1 MB

● Optimize latency and
throughput = use one or
a relatively small number
of open Connections and
label the web requests
accordingly= HTTP
multiplexing

CPU usage for the client and server related to size, for different Open Connections/Threads combinations

Resource Usage Measurements - CPU Cycles

L3 memory evicted volume for the client and server related to size, for different Open Connections/Threads combinations

Resource Usage Measurements

Resource Usage Measurements - Memory

Benchmarks over IB - REST vs. MPI

Mistral, the High
Performance Computing
system for Earth system
research at the German
Klima research Center
DKRZ.

Likwid

Benchmarks over IB - REST vs. MPI- OSU Micro-Benchmark

osu_get_latency

● RANK1 calls MPI_Get to
directly fetch data of a certain
size from the RANK 0
process's window into a local
buffer.

● RANK1 waits on a
synchronization call
(MPI_Win_complete) for local
completion of the Gets.

● After several iterations the
average get latency numbers
is reported.

Likwid

REST vs. MPI - OSU Micro-Benchmark

osu_get_bw
● RANK1 calls a fixed number

of back-to-back MPI_Gets
and then waiting on a
synchronization call
(MPI_Win_complete)

● After several iterations, the
bandwidth is calculated
based on the elapsed time
and the number of bytes
received by the origin
process

REST vs. MPI : Latency and Throughput

● For small object sizes, the
latency of REST is higher

● MPI and REST over TCP have
similar throughput especially for
small and large file -> TCP
Overhead

● MPI performance dip is due to
eager & rendez-vous

● The system isn’t optimal
configured

REST vs. MPI : Resource Usage

● Minimal L3EV for MPI over RDMAoIB because of the direct data transfer
● L3EV for both REST and MPI over TCPoIB is constant for files smaller than 100 KB but increases exponentially afterward
● Higher CPU usage for MPI

Model Evaluation
Hardware and Network Parameters:

● rtt = 0.06ms
● mem_tp = 17.088 MB/s
● net_tp = 5.9 GByte/s
● R=2.49 GHz

 βi in our model are calculated using the Excel Regression Tool

MPIoRDMA

MPIoTCP

RESToTCPoIB

HTTP1.1 vs HTTP2 vs HTTP3 : WR Cluster

● Support for the 3 protocols:
○ Webserver: openlitespeed
○ Benchmark tool: h2load
○ Patched version of OpenSSL provided by the ngtcp2 team

● Binary streams
● Multiplexing single TCP

connection
● HTTP headers compression
● Server Push

● UDP Based
● Stream multiplexing
● Stream and connection-level flow control
● Low-latency connection establishment
● Connection migration

HTTP1.1 vs HTTP2 vs HTTP3 : WR Cluster

Conclusion: HTTP1.1 and HTTP2 offers similar performance, the one from HTTP3 seems buggy!

HTTP1.1 vs HTTP2 vs HTTP3 : On Mistral, using IB

HTTP1.1 vs HTTP2 vs HTTP3: Resource Usage

A closer look at the evolution of the parameters defined in our model reveals the cause

● An assessment of using REST as an IO protocol in an HPC environment
● A performance model based on hardware counters is provided and validated
● Same transport protocol is used, i.e., TCP, REST can provide similar latency and throughput

to MPI while enabling better portability
● Newer versions of the HTTP protocol may have potential to improve performance
● Future Work: validate that REST is a performant and efficient alternative to common HPC

I/O protocols in an actual HPC scenario
● Seamless convergence between HPC and Cloud
● Please discuss the paper in the JHPS incubator

Conclusions

https://docs.google.com/document/d/1AANE-t3vF5bJffulpWTUE0xKYQQQx-jqxdTBxfbjiPw/edit?usp=sharing

