

A Reinforcement Learning Strategy to Tune Request Scheduling at the I/O Forwarding Layer

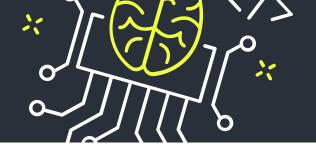
Jean Luca Bez, Francieli Zanon Boito, Ramon Nou, Alberto Miranda, Toni Cortes, and Philippe O. A. Navaux

jean.bez@inf.ufrgs.br

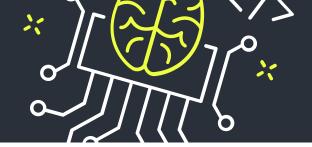
HPC-IODC HPC I/O in the Data Center Workshop 2020

Barcelona Supercomputing Center Centro Nacional de Supercomputación

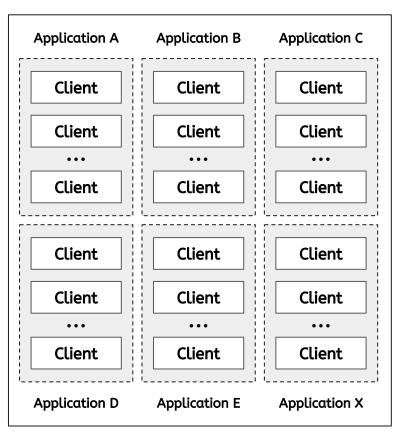
INTRODUCTION AGENDA



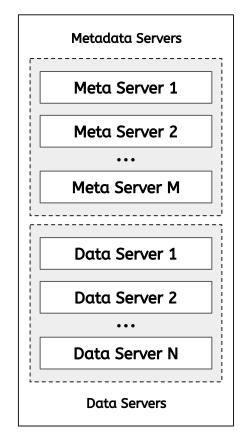
- The I/O Forwarding Layer
- Motivation
- Case Study: TWINS Scheduling Algorithm
- Adaptive I/O Forwarding Layer
- Results
- Conclusion

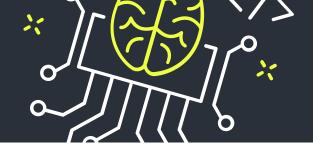


Compute Nodes

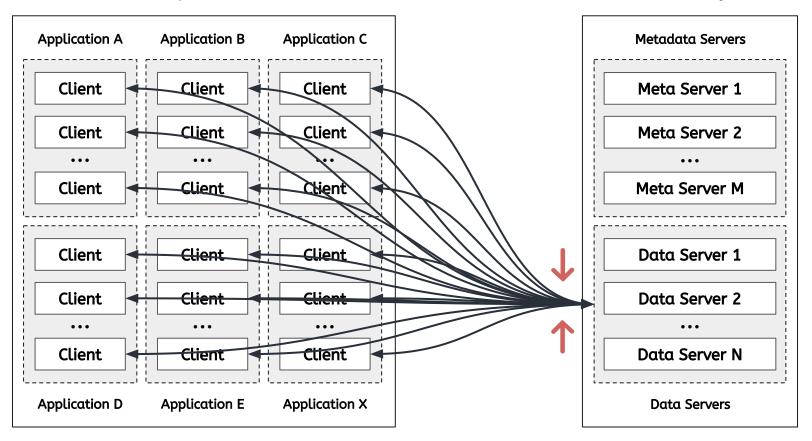


Parallel File System

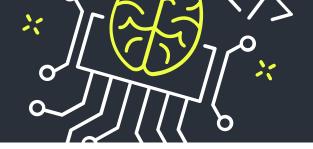




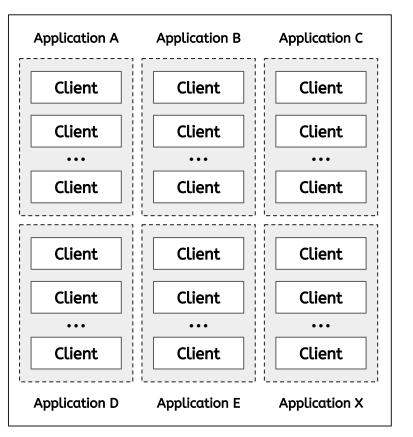
Compute Nodes

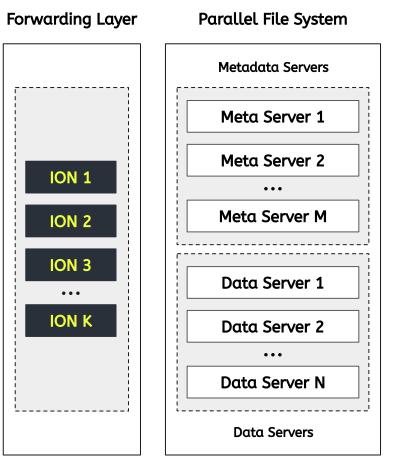


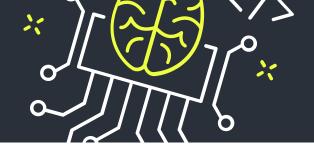
Parallel File System

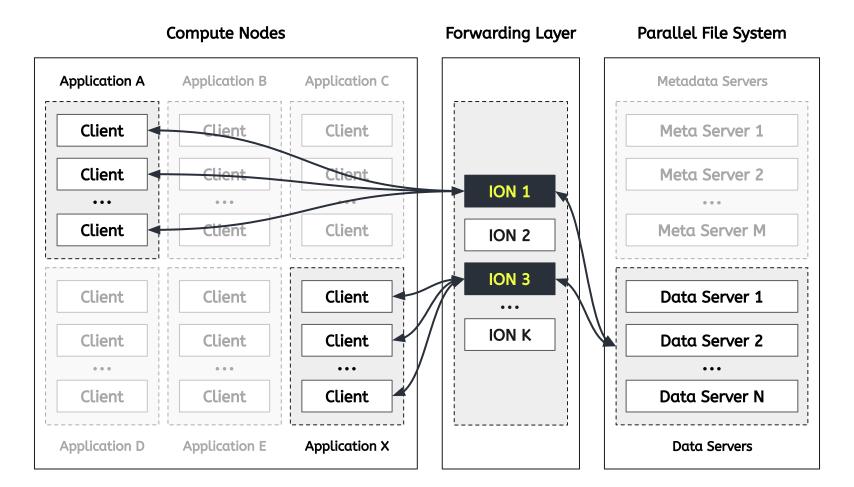


Compute Nodes







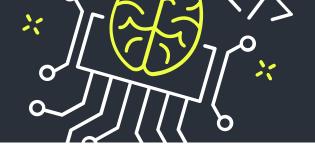


HPC-IODC 2020 | A Reinforcement Learning Strategy to Tune Request Scheduling at the I/O Forwarding Layer



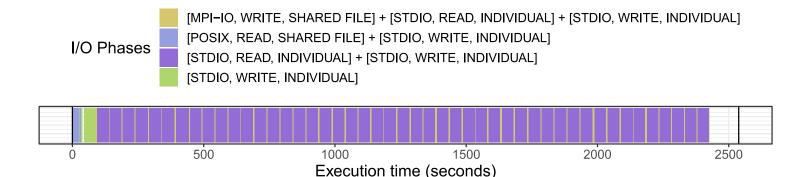
Forwarding Layer Parallel File System **Compute Nodes Application A Application B Application C** Metadata Servers I/O Request Scheduling Client Meta Server 1 Client Client Client Client Client Meta Server 2 ION 1 Client Meta Server M Client Client ION 2 ION 3 Client Client Data Server 1 Client ... ION K Client Client Client Data Server 2 Data Server N Client Client Client **Application D Application E** Data Servers Application X

MOTIVATION Adaptation

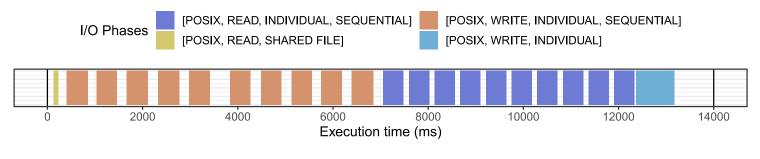


- I/O optimization techniques
 - Fail to provide improvements for all access patterns
 - Designed to explore specific system and workload characteristics
- Essential to adapt the system to a changing workload
- Our goal is to adapt the forwarding layer to the current I/O workload
 - Access pattern detection
 - Reinforcement learning technique
 - During runtime
- Tune any optimization technique that depends on the **access pattern**

MOTIVATION I/O Characterization

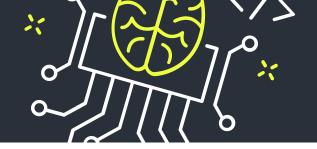


The Ocean-Land-Atmosphere Model (OLAM) application at the Santos Dumont Supercomputer (LNCC)

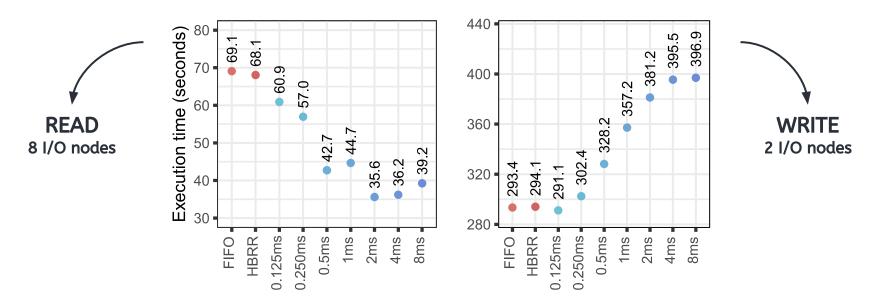


Application 2201660091 (job 15335183665324813784) running in the Intrepid supercomputer at Argonne National Laboratory (ANL)

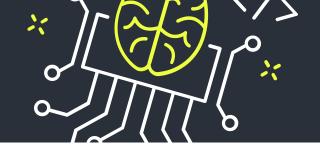
INTRODUCTION TWINS Scheduler



- Coordinate the I/O nodes access to the shared PFS servers
 - Multiple request queues in each I/O node, one for each data server
 - TIME WINDOW dedicated to forward requests to a given data server
- Increase in performance by 48% over IOFSL's default schedulers
- The choice of window size is of **paramount** importance



ADAPTIVE I/O FORWARDING Reinforcement Learning



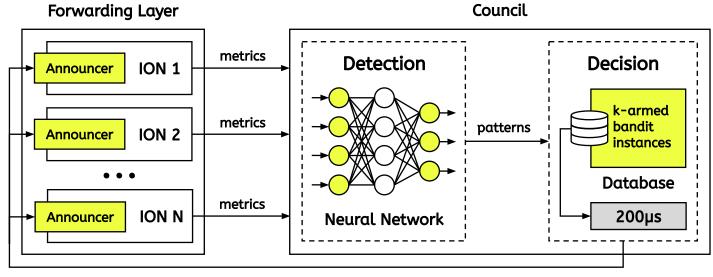
- Learn the best choice for different situations while they are observed
- Reinforcement Learning problem: **k-armed bandit**
 - At each step an agent takes one of the possible k actions and receives a reward
 - For TWINS each action represents a different time window duration
 - Exploration and exploitation

• Contextual bandits

- Multiple "instances" of the k-armed bandit
- One for each access pattern
- \circ ϵ -greedy at step *t* takes action *a* with probability (1- ϵ) or ϵ to random select an action
- Learning is **not limited** by the execution of the application

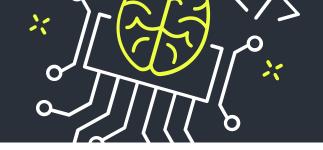
ADAPTIVE I/O FORWARDING Proposed Solution





new TWINS window

ADAPTIVE I/O FORWARDING Experimental Setup



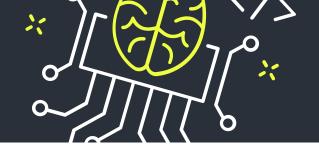
- 2 clusters from **Grid'5000** platform: **Grimoire** and **Grisou**
- 4 **PVFS** servers on Grimoire
- 1, 2, 4, and 8 IOFSL servers on Grisou
- 32 clients on Grisou
- MPI-IO Test benchmarking tool
 - Number of processes: 128, 256, and 512
 - File layout: shared file or file-per-process
 - Spatiality: contiguous or 1D-strided
 - Operation: read or write
 - Request size: 32KB or 256KB (smaller or larger than the PFS stripe size)
- **144** scenarios with **7 window sizes** = 1,008 experiments
- Metrics collected in each I/O node **every second** (>1 million observations)

ADAPTIVE I/O FORWARDING Offline Evaluation

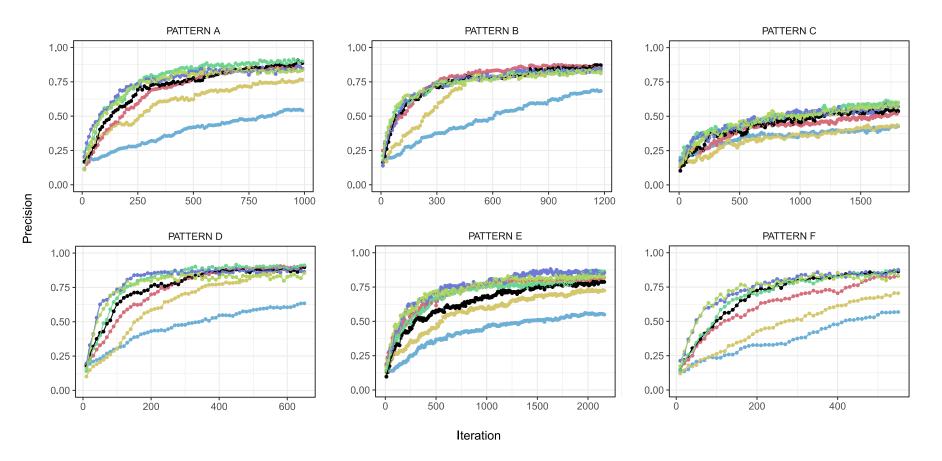
- Simulation of **ε-greedy** policy
- Assume perfect pattern detection
- Use previously collected real measurements
- 100 simulations

	I/O Nodes	Processes	File Layout	Request Spatiality	Request Size	Operation
Α	8	128	Shared	1D-strided	32KB	read
В	2	128	Shared	Contiguous	32KB	write
С	8	512	Shared	Contiguous	32KB	read
D	1	128	Shared	1D-strided	32KB	write
Е	1	128	Individual	Contiguous	32KB	write
F	4	128	Shared	1D-strided	32KB	read

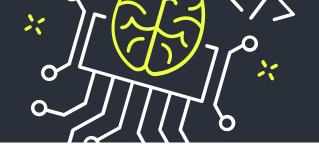
ADAPTIVE I/O FORWARDING Offline Evaluation



 ϵ -- 0.01 -- 0.03 -- 0.05 -- 0.07 -- 0.1 -- 0.15 -- 0.2



ADAPTIVE I/O FORWARDING Offline Evaluation

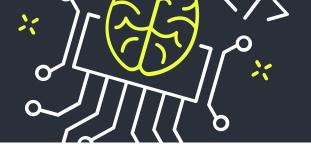


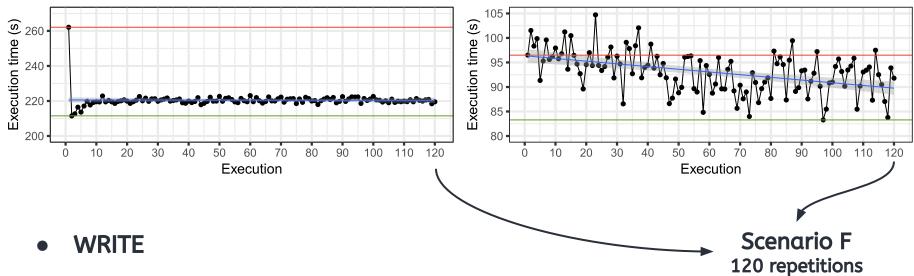
- The smaller the $\boldsymbol{\epsilon}$ the slower the convergence
- ε of 0.15 only chooses the best action **85% of the time**

Pattern	Α	В	С	D	Е	F
Precision	0.88	0.88	0.49	0.87	0.59	0.59
Performance	0.99	0.96	0.96	0.97	0.98	0.92

- Easier to learn where there is a clear better choice
- Selecting a value similar to the best choice also yields performance

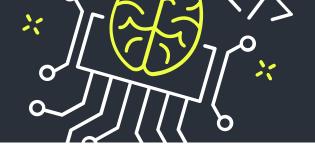
RESULTS Live Adaptation

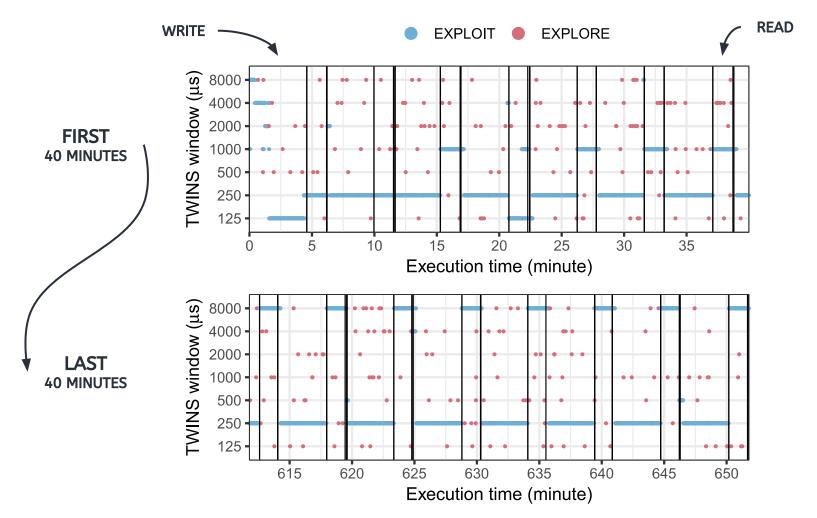




- In the first execution (first ~260s)
- READ
 - Phases are 60% shorter, thus less iterations
 - Delay of 1s to detect a phase has changed
 - Read time presents a higher variability which adds noise to the learning
 - Bad decision (during exploration) have bigger impact on reads

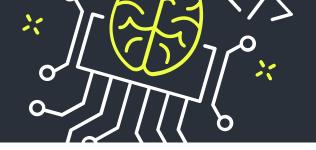
RESULTS Live Adaptation

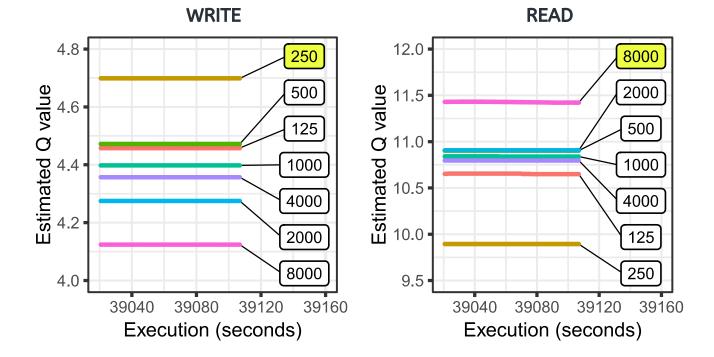




HPC-IODC 2020 | A Reinforcement Learning Strategy to Tune Request Scheduling at the I/O Forwarding Layer

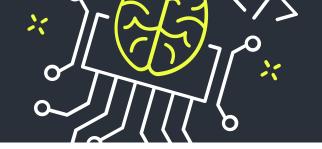
RESULTS Estimated Q Values



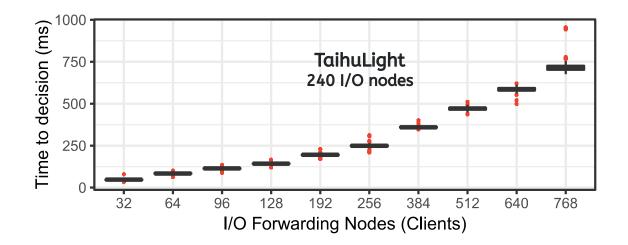


- The best choice is 250µs for WRITE phases and 8ms for READ phases
- Improve performance for all applications that share the learned pattern

RESULTS Overhead and Scalability



- Repeated the 144 experiments **ignoring** the decisions
- Overhead observed only for 65 scenarios (median < 2%)
- Centralized Council's can handle a large of number of I/O nodes
 - Average of 60 executions for each number of clients reporting metrics



Conclusion

- Proposed an approach to **adapt the I/O forwarding layer**
- System can learn the best choice during **runtime**
 - Remove the burden from the user to find the tuned parameter
 - Re-use learned information for all applications that share similar patterns
- TWINS rely on the correct window size
 - Depends on the system configuration and application's access pattern
- ~88% precision reaching ~99% of the performance of the best option
- Solution is **not** specific to **TWINS**

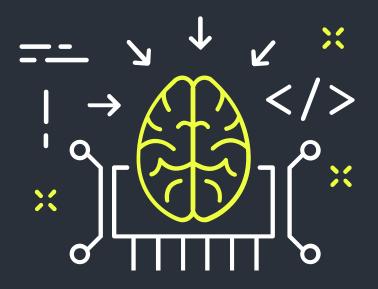
jeanbez.gitlab.io/adaptative-io-scheduling

https://doi.org/10.1016/j.future.2020.05.005

ACKNOWLEDGMENTS

This study was financed in part by the **Coordenação de Aperfeiçoamento de Pessoal de Nível Superior** - Brasil (CAPES) - Finance Code 001. It has also received support from the **Conselho Nacional de Desenvolvimento Científico e Tecnológico** (CNPq), Brazil; the **LICIA** International Laboratory; NCSA-Inria-ANL-BSC-JSC-Riken **Joint-Laboratory on Extreme Scale Computing** (JLESC); the **Spanish Ministry of Science and Innovation** under the TIN2015–65316 grant; and the **Generalitat de Catalunya** under contract 2014–SGR–1051. This research received funding from the **European Union's Horizon 2020** research and innovation programme under the **Marie Skłodowska-Curie** grant agreement No. 800144. Experiments presented in this paper were carried out using the **Grid'5000** testbed, supported by a scientific interest group hosted by Inria and including CNRS, RENATER and several Universities as well as other organizations (www.grid5000.fr).

This project is partially funded by the European Union.



A Reinforcement Learning Strategy to Tune Request Scheduling at the I/O Forwarding Layer

Jean Luca Bez, Francieli Zanon Boito, Ramon Nou, Alberto Miranda, Toni Cortes, and Philippe O. A. Navaux

jean.bez@inf.ufrgs.br

HPC-IODC HPC I/O in the Data Center Workshop 2020

Barcelona Supercomputing Center Centro Nacional de Supercomputación

