Data Systems at Scale in Climate and Weather:
Activities in the ESIWACE Project

Julian Kunkel on behalf of the ESIWACE WP4 Team
Department of Computer Science, University of Reading
25 June 2020

esivwace

CENTRE OF EXCELLENCE IN SINULATION OF WEATHER
d €

-

OUt'Ine _C esiwace

Introduction
Vision
ESDM

B Evaluation

E Summary and Outlook

Disclaimer: This material reflects only the author’s view and the EU-Commission is not responsible for any use

that may be made of the information it contains

Kunkel (WP4 Team) Data Systems at Scale 25 June 2020 2/32

Introduction Vision Evaluation Summary and Outlook
©0000 e @© > 000

ESIWACE: http://esiwace.eu (ssiwace

The Centre of Excellence in Simulation of Weather and Climate in Europe

Prepare the European weather and climate community
Make use of future exascale systems
Goals in respect to HPC environments

Improve efficiency and productivity
Supporting the end-to-end workflow of global Earth system modelling
Establish demonstrator simulations that run at the highest affordable resolution

Funding via the European Union's Horizon 2020 program (ESiWACE2 2019-2022)

CENTRE OF EXCELLENCE IN SIMULATION OF WEATHER
AND CLIMATE IN EUROPE

(esiwace

Kunkel (WP4 Team) Data Systems at Scale 25 June 2020 3/32

http://esiwace.eu

Introduction isi i mary and Outlook

[e] le]e]e}

The ESIWACE Community C esiwace

20 partners from 9 countries
35 supporters

Figure: Group Photo during the ESIWACE2 Kick-Off Meeting (March 2019)

Kunkel (WP4 Team) Data Systems at Scale 25 June 2020 4 /32

Introduction Vision Evaluation Summary and Outlook
0000 0000

Climate/Weather Workflows (eswace

Challenges

Programming of efficient workflows

Efficient analysis of data

1

2

3 Organizing data sets

4 Ensuring reproducibility of workflows/provenance of data
5

Meeting the compute/storage needs in future complex hardware landscape

Scientists should rather focus on 1 and 2

Kunkel (WP4 Team) Data Systems at Scale 25 June 2020 5/ 32

Introduction
0000

Workflows in Climate and Weather L ssivace,

I A workflow consists of many steps
» Repeated for simulation time
» E.g., weather for 14 days

B A Cylc workflow specifies

» Tasks with commands
» Environment variables
» Dependencies

[Data placement could be optimized by considering available hardware

» Different and heterogenous storage systems available
» Prefetching of data, using local storage, using IME hints, ...

I Goal: Explore higher-level abstraction - scientists don't need to worry where data is

Kunkel (WP4 Team) Data Systems at Scale 25 June 2020 6 /32

Introduction
0000e

Summary and Outlook

The Coexistence of Storage — Impact of Local Storage O ssiwece
Data center -
Node Node Local facility

Lo
| /
Cloud

@ EC2

I May utilize local storage, SSDs, NVMe
» Even without communication used in workflows
I Goal: We shall be able to use all storage technologies concurrently
» Without explicit migration, put data where it fits
» Administrators just add new technology (e.g., SSD pool) and users benefit from it

Kunkel (WP4 Team) Data Systems at Scale 25 June 2020 7/ 32

Vision
€000

Outline £ ssiwace

Vision

Kunkel (WP4 Team) Data Systems at Scale 25 June 2020 8 /32

Summary and Outlook

Long Term Vision: Full Separation of Concerns C

Decisions made by users/scientists

Scientific metadata (e.g., what is the data about)
Declaring workflows
Covering data ingestion, processing, product generation, and analysis
Data life cycle (and archive/exchange file format)
Declaring value of data (logfile, data-product, observation)
Constraints on: accessibility (permissions), ...
Expectations: completion time (interactive feedback human/system)
Flexibly adapt to needs of users/scientists
Modify workflows on the fly
Analyse interactive, e.g., Visual Analytics

Kunkel (WP4 Team) Data Systems at Scale 25 June 2020

esiwace

9/32

Summary and Outlook

Separation of Concerns C
Decision made by programmers of models/tools

Decide about the most appropriate APl to use (e.g., NetCDF + X)
Register compute snippets (analytics) to API

Do not care where and how compute/store

Decisions made by the (compute/storage) system

Where and how to store data, including file format

Complete management of available storage space

Performed data transformations, replication factors, storage to use
Including scheduling of compute/storage/analysis jobs (using, e.g., ML)

Where to run certain data-driven computations (Fluid-computing)

Client, server, in-network, cloud, your connected laptop

Kunkel (WP4 Team) Data Systems at Scale 25 June 2020

esiwace

10 / 32

ESDM Evaluation Summary and Outlook

Introduction Vision
s) oooe

(esiwace

Smarter Climate/Weather Workflows in 2020+

— HPC Site(s) A .

Acquisition | MEamanan % loT (and mobile devices)
storage . Additional data provider

Forecast/

\) - — Simulatio Improves short-term

o .| repiitﬁory \ weather prediction

‘ Short-term ‘ Transient Machine learning support
storage ~ bdaf;: H{ Visualization Localize known patterns

| uirer N ‘

Interactive use
Visual analytics
Data reduction

Output is triggered by
events (ML)
Compress data of
ensembles

Product
eneratio

Permanent Transient
—| data

Qrchlve i

Kunkel (WP4 Team) Data Systems at Scale

nation

25 June 2020 11/ 32

ESDM
#0000000000

Outline £ ssiwace

ESDM

Kunkel (WP4 Team) Data Systems at Scale 25 June 2020 12 / 32

Introduction ESDM Evaluation Summary and Outlook

0O®@000000000

Earth-System Data Middleware ssiwece
A transitional approach towards a vision for |/O addressing

Scalable data management practice
The inhomogeneous storage stack
Suboptimal performance and performance portability

Data conversion/merging

Design goals of the Earth-System Data Middleware

1 Relaxed access semantics, tailored to scientific data generation
2 Site-specific (optimized) data layout schemes

3 Ease of use and deploy a particular configuration

4

Enable a configurable namespace based on scientific metadata

Kunkel (WP4 Team) Data Systems at Scale 25 June 2020 13 / 32

ESDM

00@00000000

AI’ChiteCture _Q esiwace,

Key concepts

I Middleware utilizes layout component to make placement decisions
0 Applications work through existing API
I Data is then written/read efficiently; potential for optimization inside library

User-level APIs
Data-type aware Canonical

Site-specific Format
ite- [;

File system
back-ends d - .

and Site i Internet

mapping - Archival
@ M file c|

Kunkel (WP4 Team) Data Systems at Scale

25 June 2020

14 / 32

ESDM
00080000000

A Transitional Storage Stack for Large-Scale Ensembles & e

5| Application I Users run ensemble (e.g., 10x simulation with slightly
EE different parameters)
Sl X10S I XIOS (climate/weather domain-specific) servers run on

subset of nodes

» Receive data from all 10 simulations
> Reduces data, e.g., computing mean/variance
> Store interesting data (reduced data and maximum)

B ESDM performs |0 efficiently
» Using underlying (heterogenous) storage systems efficiently

Ppow ejeq

ul =
%’Q
@)
<O
=

System specific

Kunkel (WP4 Team) Data Systems at Scale 25 June 2020 15 / 32

ESDM
0000@000000

Architecture: Detailed View of the Software Landscape in ESIWACE L ssiwece

Simulation Cyle

Analysis Script cp-esdm PAV application

Analysis Script

P .
g .
2 .
z .

'3 B

B .
* —

] esd-daemon ' N
] .

B ' .
s .
a .
a .
n |

ESDM core

Kunkel (WP4 Team) Data Systems at Scale 25 June 2020 16 / 32

ESDM
00000800000 o 00 000

Backends (ssiwece

Storage backends

POSIX: Backwards compatible for any shared storage
CLOVIS: Seagate-specific interface, will be open sourced soon
WOS: DDN-specific interface for object storage

KDSA: Specific interface for the Kove cluster-wide memory

PMEM: Non-volatile storage interface (http://pmem.io)

Metadata backends

POSIX: Backwards compatible for any shared storage

Investigated performance of ElasticSearch, MongoDB as potential NoSQL solutions

Kunkel (WP4 Team) Data Systems at Scale 25 June 2020 17 / 32

http://pmem.io

Introduction Vision ESDM Evaluation Summary and Outlook
00000 0000 00000000000 0000000

ESDM as NetCDF Drop-In is Easy to Use (esiwace

Create a ESDM configuration with storage locations

Run esdm-mkfs to prepare storage systems (e.g., mkdir on POSIX)

Change file names when running NetCDF applications
The namespace of ESDM is separated from the file system (hierarchical too)
NetCDF can use ESDM by just utilizing the esdm:// prefix

Examples:

Import/Inspection/Export of data using NetCDF
$ nccopy test _echam _spectral.nc esdm://user/test _echam spectral
$ ncdump -h esdm://user/test _echam spectral
$ nccopy -4 esdm://user/test _echam spectral out.nc

Usage in XIOS, change iodef. Example:
<file id="output" name="esdm://output" enabled=".TRUE.">
prec=8 in axis_ definition, domain_ definition and field _definition

Kunkel (WP4 Team) Data Systems at Scale 25 June 2020 18 / 32

Introduction ESDM Summary and Outlook

00000008000

Converting an Existing Code: Shallow Water Model (ssiweee

Facts about the model

Stores data column-wise in memory

Separates compute phase and 10 phase!

Existing NetCDF code for 10 phase

size_t start[] {0, 0};
size _t count [] {nY, 1};
for (unsigned int col = 0; col < nX; col++4) {
start [1] = col; //select col (dim "x")
nc_put vara float(dataFile, i ncVariable, start, count,
&i matrix[col+boundarySize [0]][boundarySize [2]]);

1DSLs will help to separate those phases
Kunkel (WP4 Team) Data Systems at Scale 25 June 2020 19 / 32

ESDM i Summary and Outlook
00000000800 fole 000

ESDM Code for the Application soiwece

int64 t offset[] = {(int64 t) timeStep, offsetY , offsetX};
int64 t size[] = {1, (int64 _t) nY, (int64 t) nX};

esdm wstream float t stream;
esdm _wstream _start(&stream , dset, 3, offset, size);
for(int y = 0; y < nY; y++) {
for(int x = 0; x < nX; x++) {
esdm _wstream pack(stream,
i _matrix[x + boundarySize [0]][boundarySize[2] + y])
// this may trigger actual 10 and postprocessing!
}
¥

esdm_wstream commit(stream);

I Ultimately, using DSLs an 10 phase could mix in compute and "stream output" to
minimize memory pressure (and trigger initial post-processing)

Kunkel (WP4 Team) Data Systems at Scale 25 June 2020 20 / 32

Introduction Vision ESDM Evaluation Summary and Outlook

00000000080

Design Overview for Workflow Extensions (esiwece

Relevant components
Configuring system information
Extending the workflow description (inputs needed and output specification)
Providing a smart 1/O scheduler (EIOS)

Modified workflow execution

1 Cylc analyzes workflow

EIOS provides Slurm variables

21 Wflow manager allocates resources Workﬂovj -
A

o N
May schedule on nodes of prev. jobs (Config File| \ [Config Fiq

T S
Config Fil

Kunkel (WP4 Team) Data Systems at Scale 25 June 2020 21 /32

3] Job script runs applications

EIOS generates pseudo filenames
encoding scheduling information

Introduction Vision ESDM Evaluation Summary and Outlook
""" 0000 00000000008 0000000

Smarter |/O Scheduler: Benefits (-

I Abstraction: Decouple decision making about storage location(s) from scientists
i Scheduler will provides hints for colocating tasks (application runs) with data

» Create dummy file name to include schedule (e.g., prefer local storage)
» ESDM parses the schedule information and enacts it (if possible)

I Optimizing data placement strategy in ESDM /workflow scheduler will be applied

» Utilizing hints for IME to pin data to cache
» Storing data locally between depending tasks (using modified Slurm)
» Optimizing initial data allocation (e.g., alternating storage between cycles)

Kunkel (WP4 Team) Data Systems at Scale 25 June 2020 22 /32

Evaluation
©000000

Outline £ ssiwace

I Evaluation

Kunkel (WP4 Team) Data Systems at Scale 25 June 2020 23 /32

Introduction Evaluation

0O@00000

Evaluation (esiwace
System

Test system: DKRZ Mistral supercomputer
Nodes: 100, 200, 500

Benchmark
Uses ESDM interface directly; metadata on Lustre

Write/read a timeseries of a 2D variable; 3x repeated
Grid size: 200k x 200k x 8 Bytes x 10 iterations

Data volume: size = 2980 GiB; compared to IOR performance

ESDM configurations
Splitting data into fragments of 100 MiB
Use /dev/shm (TMPES) or /tmp directory (Local SSD)

Kunkel (WP4 Team) Data Systems at Scale 25 June 2020 24 / 32

Performance Growth of ESDM on Lustre (PPN = 1) & sayee

200-

175-

i+
|
!

Performance in GiB/s
Performance in GiB/s
g

125+

- B

100 200 500 100 200 500

Number of nodes Number of nodes
config B8 ustre-both [lustre-bothlarge [lustre02 B lustre02-large config B8 lustre-both B lustre-bothlarge B lustre02 B lustre02-arge

Figure: Write Figure: Read

Kunkel (WP4 Team) Data Systems at Scale 25 June 2020 25 /32

Introduction Vision Evaluation Summary and Outlook

[e]e]e] le]ele)

L, esiwace

Discussion

I Benefit when accessing multiple global file systems
I Write performance benefits from using both file systems

» Most benefit when using 200 nodes (2x)
» 500 nodes: 180 GiB/s vs. 140 GiB/s (single fs)

I Read performance shows some benefit for larger configurations
I ESDM achieves similar performance regardless of PPN (not shown)

I What is the performance when we use node-local storage?

Kunkel (WP4 Team) Data Systems at Scale 25 June 2020 26 / 32

Evaluation
000000

Performance on TMPFS vs. IOR (nodes = 500, varied PPN) £ ssiwecs

4000 *
6000~
e * e
3000-
@ 4000~ '

2000~

Performance in GiB/s
Performance in GiB/s

2000~

1000+

4 8 12 i 4 8 12
PPN PPN

config B3 iortmpfs-fpp B ESDM-tmpfs config B3 iortmpfs-fpp B8 ESDM-tmpts

Figure: Write Figure: Read

Kunkel (WP4 Team) Data Systems at Scale 25 June 2020 27 / 32

Introduction Vision Evaluation Summary and Outlook

0000080

Discussion (eswace

M Node-local storage is much faster than global storage

» TMP achieves 750-1,000 GB/s for write (500 SSDs, some caching)
» TMP reads are actually cached (6 GB data per node)
» TMPFS achieves up to 3,000 GB/s

M TMP write is invariant to PPN

» ESDM configured to use at least four threads per node
Il TMPFS write depends on PPN

» ESDM configured to not use threads, could use them to improve performance!
[IOR is faster; potential to improve ESDM path further

» Localization of fragments using r-tree

Kunkel (WP4 Team) Data Systems at Scale 25 June 2020 28 / 32

Performance on NVDIMMs

GiB/s

Evaluation
000000@

O esiwece

I ESDM on the NextGenlO Prototype with a first naive approach (with PMEM)

I Test run on four dual-socket nodes with 80 GByte of data
I Theoretic HW performance per node (12 NVDIMMs) W: 96 GB/s, R: 36 GB/s

I Max test: explore best case performance (single file)
PPNme m2s m a8

6 W24 W48
PPN ®6 ® 260
250

200 200

150

GiB/s

100

100
50
0 L -l -I | |

TMPFS POSIX Optane NVDIMM NVDIMM 48 NVDIMM Max 0
threads per Test TMPFS POSIX Optane NVDIMM NVDIMM 48 NVDIMM Max
. . n Optane threads per Test
Figure: Write
Figure: Read

Kunkel (WP4 Team) Data Systems at Scale 25 June 2020 29 / 32

Summary and
®00

Outline £ ssiwace

B Summary and Outlook

Kunkel (WP4 Team) Data Systems at Scale 25 June 2020 30 / 32

Summary and Outlook

oeo

esiwace

Recent Improvements of ESDM C

Usability testing with relevant applications (works/minor issues to resolve)
Ophidia, CDO (using ESDM/NetCDF)
Dask (reading/writing ESDM/NetCDF)
XIOS (using ESDM/NetCDF)

Implemented ESDM as APl in a shallow water model to show all features
Will be used for demonstrating post-processing too

Hardening (bug fixes, documentation, reorganization, maintainability)

Optimization (read path, fragment handling, non-consecutive/data holes,
FORTRAN handling)

Created streaming API to minimize memory pressure
Support compression in ESDM using SCIL (decouples accuracy from decision)
Support data replication upon read to optimize placement (evaluation pending)

Build prototypes for supporting post-processing, analytics and (in-situ) visualization

Kunkel (WP4 Team) Data Systems at Scale 25 June 2020 31 /32

Summary and Outlook

ooe

Summary (ssiweee

ESDM: Performance-portable /O utilizing heterogeneous storage

1 The data model is mostly backwards compatible to NetCDF

NetCDF/Python workflows supported

Working toward workflow and active storage support
Exploiting node-local storage better

4 Next activities:

Comparison of flexible (ESDM) vs. fixed chunking (NetCDF)
Data re-mapping on read (transform-on-read) to optimize data access

w N

Various other 10-related activities in ESIWACE

Kunkel (WP4 Team) Data Systems at Scale 25 June 2020 32 /32

Data Model (essiwace

@ Container;

» Provides a flat (simple hierarchical) namespace
» Contains Datasets + (arbitrary) metadata
» Can be constructed on the fly

[Dataset:

» Multi-dimensional data of a specified data type

Write-once semantics (epochs are planned)

Contains arbitrary number of data fragments

Data of different fragments can be disjoint or overlapping
Dimensions can be named and unlimited

» Self-describing, can be linked to multiple containers

vyvyyvyy

@ Fragment:

» Holds data, arbitrary continuous sub-domain (data space)
» Stored on exactly one storage backend

Kunkel (WP4 Team) Data Systems at Scale 25 June 2020 33 /32

Discussion of the Data Model { esiwace

[l Fragment domain is flexible

» Avoid false sharing (of data blocks) in the write path
» A fragment can be globally available or just locally
» Reduce penalties of shared file access

|21 Self-describing data format
» Metadata contains relevant scientific metadata, datatypes
B Layout of the fragments can be dynamically chosen

» Based on site-configuration and performance model
» Site-admin/project group defines a mapping
» Use multiple storages concurrently, use local storage

[@ Containers could be created on the fly to mix-in datasets
» Open one container for input that has everything you need

Kunkel (WP4 Team) Data Systems at Scale 25 June 2020 34 /32

The Blocking |/O Path: Write (esiwece

Note: Processes write path is independent from any global state

T Scheduler identifies how to partition the data into fragments and assigns backends
A maximum fragment size is defined by each backend
May also use a performance model to partition data
(We aim to utilize workflow information for the partitioning)

2 Append the fragment to the local dataset (mark as dirty)
3] A backend-specific thread pool processes the fragments
The backend is called with the fragment
May use direct 1/O or reorganize the data in-memory

4] Wait until all fragments are processed
Collective operation

5 Upon close/sync, the MPI interface synchronizes the fragment knowledge
6 A single process updates the JSON metadata for the dataset/container

Kunkel (WP4 Team) Data Systems at Scale 25 June 2020 35 /32

The Blocking 1/O Path: Read (eswace

Preliminaries — Collective open/ref. operation of a dataset/container

1 Upon open, the fragment information is read by one process

2| Broadcast fragment information to all processes

3] Identify the overlap of fragments with the data space requested

4 Make a schedule to read each cell once (there could be replicas)
5 A backend-specific thread pool processes the fragments
Backend loads the fragments requested (use direct 1/O or copy data if needed)

6 Wait until all fragments are processed

Kunkel (WP4 Team) Data Systems at Scale 25 June 2020 36 / 32

The ESIWACE1/2 projects have received funding from the European Union's Horizon
2020 research and innovation programme under grant agreement No 675191 and No
823988

esiwace

CENTRE OF EXCELLENCE IN SIMULATION OF WEATHER
AND CLIMATE IN EUROPE

Disclaimer: This material reflects only the author’s view and the EU-Commission is not responsible for any use

that may be made of the information it contains

Kunkel (WP4 Team) Data Systems at Scale 25 June 2020 37 /32

	Introduction
	Vision
	ESDM
	Evaluation
	Summary and Outlook
	Appendix
	Mapping of Data
	I/O Path

