WEKA.IO

World's Fastest File System

Gartner

_ Vendor
WekalO: Extracting K m

Performance from Modern
HPC Hardware

Derek Burke, Regional Account Manager
Chris Weeden, Senior Systems Engineer

Company Overview

S 10 Fastest Growing

ie2rage

Compani es

4 h

WHAT WE DO
_

_ /

WEKA.IO ®

Slrge Namespace for Multiple Workloads
R G =S DA Q

.
Microscopy Genomics Imaging Device Video Editing Media Rendering HPC OLTP Data Mining Real-time Financial Fraud Geospatial
Databases Analytics Processing Detection Research
& Analyses

APP|APP)

et el aESE
W®II®|I®II®]||l®] | ® W) NFS || SMB || SMB
@ Il LU C Ry Cam @ IllINITI® HHNHNL® LI LE® HHHNLE® L@ P g@® 1P R® L@ LM @ L ge Hiiii .ll_fjllll
Ethernet or InfiniBand Network l

00®

000

@O0 ©® Storage Servers
HeEE

Data Lake

& MatrixFs

Unified Namespace (W) Matrix Client

WEKA.I0 ®

Focused On Performance Use Cases

R o

« Genomics sequencing and analytics « Machine Learning\ Al + Algorithmic trading

* Drug discovery * Real-time analytics * Business analytics (SAS Grid)
* Microscopy « 10T » Risk analysis (Monte Carlo simulation)

+ Seismic + Media rendering + CFD, Simulations
+ Reservoir simulation « Transcoding * EDA
* Analytics * Visual Effects (VFX)

WEKA.IO

We Make a Bold Claim...

\WEKA.IO

World’s Fastest File System™

From one rack of commodity hardware with 100GbE Network
Approximately:

e 400GB/s
30 Million IOPS

WEKA.IO

SPEC SFS2014 vda Results

SPEC 5F52014 vda Benchmark

Bl

Average Late ncy (ms)

G0l
4000

2000
1.8ms at highest latency

1,000 2,000 000 4000 5,000 B,000 7,000
Mumber of Simultaneous Streams

s | B Y Spectrum Scale 4.2.1 0 R apR-KD Oracle IFs I57-7 s [[N [EX 0505 o o = L

WEKA.IO Lower and Longer Are Better

SPEC SFS2014 eda Results

SPEC 5F52014 eda Benchmark

16
14
1.3

g 10

g

% o8

b

r

z

0.4 -‘..\'"'-.._ ___..-"'"'—-‘

0.2

200 4m EOD B0 1,000 1,200 1,400 1,600 1,800 2000 2,20
Number of Simultaneous Job Sets

s [} (1 GriciSea bor Oracle ZFS 257-7 o—fok s 319

WEKA.IO Lower and Longer Are Better

SPEC SFS2014 vdi Results

SPEC 5F52014 vdi Benchmark

42ms latency

E
g
E 1o
3
g
N - - Humbernl::wltaneuusDe:ll-lrtl:l:rups o o o
WEKA.IO Lower and Longer Are Better

SPEC SFS2014 db Results

SPEC SF52014 db Benchmark
5.0

4.0

Average Late ncy (ms)
(=]
o

=]
=]

1.0
/ .29ms latency

500 1,00 1,500 2 00 2,500 3,000 3500

4. D0 4 500 5. D00
Mumber of Simultanecus Databases

s [} (1 GriciSea bor Oracle ZFS 257-7 o—fok s 319

WEKA.IO Lower and Longer Are Better

How do we do 1t...

\WEKA.IO

World’s Fastest File System~

WEKA.IO

Why Data Locality is Irrelevant

o Modern networks on 10Gbit Ethernet are 30 times faster than
SSD for reads and 10 times faster than SSD for writes

o With right networking stack, shared storage is faster than local
storage

Time it takes to Complete a 4KB Page Move

ssoread
ssowric |

10Gbit (SDR) [}

100Gbit (EDR) |

0 20 40 60 80 100 120

m Microseconds

WEKA.IO

The Kernel Is designed for multi-tasking...

The system needs to be notified of the new packet and pass the data onto a specially allocated buffer
sk _buff struct (Linux allocates these buffers for every packet).

To do this, Linux uses an interrupt mechanism: an interrupt is generated several times when a new
packet enters the system. The packet then needs to be transferred to the user space.

As more packets have to be processed, more resources are consumed negatively impacting the overall
system performance.

sk _buff struct: the Linux network stack was originally designed to be compatible with as many protocols
as possible. As such, metadata for all of these protocols is included in the sk _buff struct, but that’s
simply not necessary for processing specific packets. Because of this overly complicated struct,
processing is slower than it could be.

When an application in the user space needs to send or receive a packet, it executes a system call.
The context is switched to kernel mode and then back to user mode.
This consumes a significant amount of system resources

WEKA.IO

Context Switching is wasteful...

preemption or

time quantum expired
running

(on-CPU)
swap out

schedule

Runnable

A swap in
disk 1/0 _ wakeup
> Disk
network 1/0 (s wakeup
off-CPU S|eep eep
block acquire
> Lock
wait work
for work arrives
> Idle

WEKA.IO

DPDK by-passes the Kernel...

Ootimized Libraries
timize _ Reol _—
pfor A Data Plane Libraries S;’z :;e P

Calls Network Stack

Buffer Management

Ring Management Application/

4 » Network Stack
Packet Flow Classification)
| Application/
> Poll Mode Drivers Network Stack Direct User Space
Access to
. User Space,
Direct Environmental Abstraction Layer Zero-Copy
Access
to NIC Linux Kernel Space
> NIC 4

WEKA.IO

Components of DPDK:

*Environment Abstraction Layer (EAL) : It is responsible for gaining access to low-level resources such as hardware and
memory space.

Memory Manager: Responsible for allocating pools of objects in memory. A pool is created in huge page memory space
and uses a ring to store free objects.

*Buffer Manager: Reduces by a significant amount the time the operating system spends allocating and de-allocating
buffers using advanced technigues such as Bulk Allocation, Buffer Chains, Per Core Buffer Caches etc.

*Queue Manager: Implements safe lockless queues, instead of using spinlocks, that allow different software components
to process packets, while avoiding unnecessary wait times.

*Packet Flow Classification: DPDK Flow Classifier implements hash based flow classification to quickly place packets into
flows for processing.

*Poll Mode Drivers: Instead of using Interrupts and wasting CPU attention, PMD uses polling (scanning the NIC whether
packets arrived or not), and doesn't disturb the CPU at all!

WEKA.IO ®

We also use SR-IOV and SPDK

Multiple Virtual NICs

Userspace

DPDK |

VF Driver

[k

Ker tack

SR-IOV Enabled Network Interface

WEKA.IO

more performance
from CPUs, non-
volatile media, and
networking

Benefits of SPDK

. Upto 10X MORE |OPS/core for NVMe-oF* vs. Linux kernel

: FASTER TTM/ than developing components
. LESS RESOURCES from scratch

; . as NVM technologies
Provides Future Proofing increase in perforgmance

Software Architecture

Runs in LXC Container for isolation

Kernel Module

. Flash
VFES Interface R Back End Front End

Device

Storage Client Application
Front End Services Access
= POSIX Client

= Other protocol access

Agent

Back End

= Data placement Networking
= Data protection
» File system metadata
= Tiering User
Space
Networking T T T T T
= SRIOV for network stack Kernel
= |/O bypasses network stack R
Hardware

Storage Agent
= |/O bypasses the kernel

WEKA.IO ®)

WekalO Data Path

= Application 10 (file operations)
= Acce ekalO Client as Local FS
-) Low-Latency
» POSIX-complete, high-perf
» Kernel Module for VFS integration
OR
» Client-side NFS
= Bottlenecked b
» Handled by WekalO’s Front End

WEKA.IO

Flash

Storage
Device

Agent

Back End
Storage
Services

Networking

Front End

Application

WekalO Data Path

= Application 10 (file operations)
= Access WekalO Client as Local FS
= User-Space, Low-Latency
» POSIX-complete, high-perf
» Kernel Module for VFS integration
OR
» Client-side NFS
= Bottlenecked by kernel
» Handled by WekalQO’s Front End

» WekalO Front-Ends are Cluster-Aware
» Incoming Read Requests optimized
re Location & Loading Conditions
» Incoming Writes can go anywhere
» Metadata fully distributed
» No redirects required

» SR-IOV optimizes Network access

WEKA.IO

Flash
Storage
Device
Agent

Back End Front End
Storage Client Application
Services Access

\4 Hardware

WekalO Data Path

= Application 10 (file operations)
= Access WekalO Client as Local FS

= User-Space, Low-Latency
. Flash
= POSIX-complete, high-perf Storage Back End Front End -
= Kernel Module for VFS integration Device il N Application

OR Agent
= Client-side NFS

= Bottlenecked by kernel
» Handled by WekalQO’s Front End

» WekalO Front-Ends are Cluster-Aware
» Incoming Read Requests optimized
re Location & Loading Conditions
» Incoming Writes can go anywhere
» Metadata fully distributed
» No redirects required v

= SR-IOV optimizes Network access W Hardware

» WekalO directly accesses NVMe flash
» Bypassing kernel, better perf

WEKA.IO

File System Scales Linearly with Cluster Size

Linear Scalability - IOPS

8M

™

6M

5M

4M

IOPS

3M
2M

M

0 30 60 90

120 150 180 210 240

Cluster size

—@— 100% random write (IOPS)

—@— 100% random read (IOPS)

GB/Second

100
90
80
70
60
50
40
30
20
10

Linear Scalability - Throughput

30 60 90 120 150 180 210
Cluster size

240

—&— 100% write throughput (GB) —@—100% read throughput (GB)

~30K OPS/AWS Instance

~375MB/sec/AWS Instance
<400 microsecond latency

0.6

Milliseconds
o =
N al

o
w

0.2

Linear Scalability — Latency (QD1)

0 30 60 90

120 150 180 210

Cluster size

——read latency (ms)

Test Environment — 30-240 R3.8xlarge cluster, 1 AZ, utilizing 2 cores, 2 local SSD drives & 10GB of RAM on each instance. About 5% of CPU/RAM.

WEKA.IO

—@&—write latency (ms)

240

WekalO Matrix #1 File System on SPEC

Summary of SPEC SFS 2014 Testing

WEKA.IO

Benchmark Metric

8000

7000

6000
5000
4000
3000
2000
1000

Video Streams

SW Build

Database

B WekalO m#2 Vendor

EDA

VDI

Benchmark #1 Score ORT #2 Position | Score ORT
Position (ms) (ms)
Software build WekalO 5700 0.26 NetApp 4200 0.78
Database WekalO 4480 0.34 QOracle 2240 0.78
Engineering design WekalO 2000 0.48 QOracle 900 0.61
Video streams WekalO 6800 1.56 DDN 3400 50.07
Virtual desktop WekalO 1600 0.48 DDN 800 2.58

M WekalO
Oracle

B NetApp
B DDN

#1 File System on the 0500 Test

https://www.vi4io.org/io500/list/19-01/10node

information io500
institution S}FEtEI"ﬁ storage vendor filesystem t:-,rpe client nodes | client total procs data | score bw md
GiB/s | kIOP/s
1 WekalO WekalO 10 700 | zip | 58.25 | 27.05 | 125.43
2 Oak Ridge Mational Laboratory summit IEM | Spectrum Scale 10 160 Zip | 4430 9.84 | 1899.48
3 DDN Bancholab DDN Lustre 10 240 | zip| 3150 | 6.33 | 156.69
I0500 Ten Node Challenge Score
o 31% better than 70
World’s largest 60
Supercomputer 50
40
30
o 85% better than %
Lustre 10
0
DDN Lustre IBM Spectrum Scale WekalO
WEKA.IO

Thank you.

WEKA.IO e

https://docs.weka.lo https://start.weka.lo

https://docs.weka.io/
https://start.weka.io/

