Florent Lebeau
- 21/11/19

Arm Forge Ultimate

A cross-platform toolkit for debugging, profiling and performance analysis

I;‘.’
Commercially supported
by Arm

—+

N N
Fully Scalable

® l! |
Very user-friendly

2 © 2019 Arm Limited

The de-facto standard for HPC development

- Available on the vast majority of the Top500 machines in the world
- Fully supported by Arm on Arm servers, x86, IBM Power, Nvidia GPUs, etc.

State-of-the art debugging and profiling capabilities

- Powerful and in-depth error detection mechanisms (including memory
debugging)

- Sampling-based profiler to identify and understand bottlenecks

- Available at any scale (from serial to petaflopic applications)

Easy to use by everyone

- Unique capabilities to simplify remote interactive sessions
- Innovative approach to present quintessential information to usersoirm

Arm Forge — MAP Multi-node Low-overhead Profiler

Understand MPI/CPU/IO operations —
thanks to timelines and metrics

Investigate
annotated
source code
and stack
view

File Edit View Metrics Window Help

Profiled: hemelb on 256 processes, 0 nodes Sampled from: Sun Jan 26 19:37:21 2014 for 464.1s

CPU floating-point **

14.9%

Memory usage

122 MB

19:39:55 (+154.087s, 33.3%): Memory usage ranged from 70.0 kB (rank Q) to 145 kB (rank 71) with mean 119 kB and s.d. 10.6 kB

Inspect OpenMP activity

Profiled: Discovar on 1 process, 1 node, 24 cores (24 per process) Sampled from: Wed Jul 1 11:28:43 2015 for 478.1s

Application activity

ol_=i D e W i ¥ e e e e == Main thread activity
w

CPU integer e
mL%

0 oy . _ o

Analyze GPU efficiency

Time in global memory accesses ' —
9.6% . -
4 StepManager.h oL -
100
54 Concern * concern; Lol
55 MethodLabel method; 36%
56 std::string name; o
57 Action(Concern &concern, MethodLabel methed) : 04:56:53.04:59:00 (127.6905): Main thread compute 35.5 %, MPI 3.8 %, Accelerator 11.3 %, Fle /0 8.4 %
58 concern(&concern), method(method)
61 Action(const Actien & action) : T mmuls_solc X | ™ mmukt3_solcu X
62 concern(action.concern), method(action.method) ({-..¥) ha - =Tt ‘
65 = bool call()
66 { C i —
92.6% L, 67 refurn_concern->CallAction(method); U |
68 }
69 h
70
7 ‘typedef std::map<steps::Step, std::vector<Action> > Registry; o | A []
72 rank == 0
] Vo ek = 6
78 StepManager (Phase phases = 1, reporting::Timers * timers = NULL, bool separate concerns = false);
79
& Jene
87 void Reaister(Phase phase. steps::Step step. Concern & concern. MethodLabel method):

Input/Output | Project Files | Main Thread Stacks | Functions |

Main Thread Stacks

Total core time ~ | MPI Function(s) on line Source File Edit View Metrics Window Help
B ¢ main { . ? 201
= SimulationMaster::RunSimulation() master.RunSimulation(); Profiled: python2.7 on 8 processes, 1 node, 8 cores (1 per process) Sampled from: Thu Jan 24 2019 13:29:04 (UTC) for 32.0s

69.5% il

15.5%
7.6%

0.2%
<0.1%

W

=HandleActors [inlined] DoTimeStep(); . L
= CallActionsForPhase [inlined], CallActio... stepManager->CallActions(); Main thread activity
[T 1]16. return concern->CallActi
PLAL kL) Li15.4% wCall[inlined] CallActionsForStep(static_cast<steps::Step>(step), 0);
_1.6% = CallActionsForPhase [inlined] CallActionsForPhase(phase);

13:29:04-13:29:36 (32.019s): Main thread compute 47.4 %, MPI 33.1 %, File /O 2.0 %. Python interpreter 17.4 %, Sleeping 0.1 %

3 © 2019 Arm Limited

imbpostr.py X

write_sorted_letters(rank*10**5)

comm.Barrier() # wait for everybody to sy

imbalance (comm, rank, a, b)

Usage

Compile executable and libraries with debugging information
S mpicc -g -0O3 myapp.c -0 myapp.exe

Profile by prefixing your mpirun/srun command
S map --profile mpirun -n 8 ./myapp.exe myargs
S map --profile mpirun -n 8 python ./myapp.py myargs

This will create a *.map file that can be open in the GUI
S map myapp_8p_1n_YYYY-MM-DD_HH-MM.map

© 2019 Arm Limited

arm

Visualizing profiling results

File Edit View Metrics Window Help

Profiled: python2.7 on 8 processes, 1 node, 8 cores (1 per process) Sampled from: Thu Nov 14 2019 14:02:15 (UTC) for 37.5s

Main thread activity

CPU floating-point
128 %

CPU memory access
48.1 %

Hide Metrics...

Memory usage
142 MB

15:02:15-15:02:52 (37.451s): Main thread compute 43.3 %, MPI

53.5 %, File 1/0 0.6 %, Python interpreter 2.6 %, Synchronisation %, Sleeping 0.0 %

0:
("{}: Processing mmult_opt".fo (mz})})

[v]

6.2% | §
0.9% i

C_MMULT LIB:ﬁuuult opt (sz, nproc, mat_a, mat_b, mat_c)

comm.Barrier ()
if mr H

P {}: Processing mmult_block32 {mr))
C_MMULT_LIB.mmult_block (&4, sz, nproc, mat_a, mat_b, mat_c)
comm.Barrier ()

if mr 0:

P ("{}: Processing mmult_block&4".f {mr))
C_MMULT_ LIB.mmult_block (32, sz, nproc, mat_a, mat_b, mat_c)
comm.Barrier ()
if mr == 0O:

P ("{}: Processing mmult_unroll".f at (mr))

C_MMULT LIB.mmult_unroll (32, sz, nproc, mat_a, mat_b, mat_c)
comm.Barrier ()

o

(4]

T e
Zoom&\\} = o

Time spent on line 153

Breakdown of the 15.8% time
spent on this line:

Executing instructions 0.0%
Calling other functions 100.0% NN
Executing Python code 0.0%

[Input/Output] Project Files | Main Thread Stacks | Functions I

Main Thread Stacks

Total core time ~ MPI Function(s) on line Source Position
= & python2.7 [program]
B ¢ mmult.py #!/usr/bin/env python mmult.py:1
B main main(args.mat_size, args.kernsl, args.fn) mmult.py:204

9.0% . yCFuncPtr_call C_MMULT_LIE.mmult_block (64, sz, nproc, mat_a, mat b, mat_c) mmult.py:157
8.2% . PyCFuncPtr_call C_MMULT_LIBE.mmult_block (32, sz, nproc, mat_a, mat_b, mat_c) mmult.py:161
6.2% [§ PyCFuncPtr_call C_MMULT_LIE.mmult_unrcll{32, sz, nproc, mat_a, mat_b, mat_c) mmult.py:165 =
3.1% mwrite mwrite (mat_c, £ilename) mmult.py:181
2.0% r 2.0% __pyx_pw_6mpidpy_3MPI_4Comm_8... comm.Barrier{) mmult.py:150
1.2% minit minit (sz, kernel, mat_a) mmult.py:103 L
1.2% minit minit (sz, kernel, mat_b) mmult.py:104 b

Showing data from 8,000 samples taken over 8 processes (1000 per process)

5 © 2019 ArmLimited

Arm Forge 20.0-rc4 & Main Thread View

Visualizing profiling results

File Edit View Metrics Window Help

Activity graph (Compute,
MPI, IO, Python Interpreter)

Profiled: python2.7 on 8 processes, 1 node, 8 cores (1 per process) Sampled from: Thu Nov 14 2019 14:02:15 (UTC) for 37.5s Hide Metrics... Pro cesses

Main thread activity

CPU floating-point
128 %

T—» Time

CPU memory access
48.1 %

Memory usage
142 MB

15:02:15-15:02:52 (37.451s): Main thread compute 43.3 %, MPI 53.5 %, File I/O 0.6 %, Python interpreter 2.6 %, Synchronisation %, Sleeping 0.0 %

y X Time spent on line 153
- : Oi.. o . — *| Breakdown of the 15.8% time
P {("{}: Proce ng mmult_opt”.fo (mr)) spent on this line:
Ou rce CO e VIeW C_ MMULT LIB.mmult opt (sz, nproc, mat_a, mat b, mat_c) P :
e comm.Barrier () Executing instructions 0.0%
if mr :
- "1y Proce Calling other functions 100.0% Il
9.0% C_MMEJLT_LIB .mmult_block mat_c) Executing Pythun code 0.0%
0.4% comm.Barrier ()
if mr 0:
P "{}: Proc ng mmult_blocké&d".f it (mr))
8.2% C_MMULT_ LIB.mmult_block (32, sz, nproc, mat_a, mat_b, mat_c) —
0.6% comm.Barrier ()
if mr == 0O: £
P ("{}: Proc ng mmult_unroll”.f at (mr))
6.2% C_MMULT LIB.mmult_unroll (32, sz, nproc, mat_a, mat_b, mat_c)
0.9% comm.Barrier () =l

[Input/Output] Project Files | Main Thread Stacks | Functions I

Main Thread Stacks

Total core time ~ MPI Function(s} on line Source Position
= & python2.7 [program] |
B ¢ mmult.py #!/usr/binfenv python S / . .
s main(args.mat_size, args.kernsl, args.fn) t F t
26.5% 26.5% yx_pw_6mpidpy 3MPI_4Comm 1 mat_a = comm.recv{source=0, tag=mr) \§|E s u nc Ion VIeW
15.8% I PyCFuncPtr call C) 3
9.0% [] PyCFuncPtr_call C_MMULT_LIE.mmult_block (64, sz, nproc, mat_a, mat b, mat_c) mmult.py:157
8.2% B yCFuncPtr_call C_MMULT_LIE.mmult_block (32, sz, nproc, mat_a, mat_b, mat_c) mmult.py:161
6.2% [§ PyCFuncPtr_call C_MMULT_LIE.mmult_unroll{32, sz, nproc, mat_a, mat_b, mat_c) mmult.py:165
3.1% rite mwrite (mat_c, £ilename) mmult.py:181
2.0% r 2.0% _pw_6mpi4py_3MPI_4Comm_8... comm.Barrier() mmult.py:150
1.2% mini minit (sz, kernel, mat_a) mmult.py:103
1.2% minit minit (sz, kernel, mat_b) mmult.py:104 &3

Showing data from 8,000 samples taken over 8 processes (1000 per process)

6 © 2019 Arm Limited

Arm Forge 20.0-rc4 & Main Thread View

Analyzing 10 usage

e POSIX read/write rate, POSIX read/write syscall rate
- Total 10 rates from the application

e Disk read/write transfer rates
« Includes disk and network filesystems accesses. May not include all 10 due to page caching.

Preset: Default

Preset: Activity Timelines
Preset: CPU Instructions
Preset: CPU Time

Precset: Fperay

Preset: 10

" Preset: Linux perf CPU events |
Preset: Memory
Preset: MPI

Activity Timelines

CPU Instructions

CPU Time

Energy

10

Linux perf CPU events
Memory

MPI

* % v w v w w w ¥

Unavailable groups

7 © 2019 Arm Limited

File Edit View Metrics Window Help
Profiled: python2.7 on 8 processes, 1 node, 8 cores Er Process)

e @
T
ol
48 T e e e |
I
e e e
-

POSIX /O read rate
0.09 kB/fs

POSIX IO write rate
0.37 MB/s

Disk read transfer
0.00 MB/s

Disk write transfer
0.37 MB/s

0
POSIX read syscall rate **°
0.11 calls/s

POSIX write syscall rate %%
0.05 k calls/s

15:02:15-15:02:52 (37.451s): Main thread compute 43.3 %, MPI 53.5 %, File I/0 0.6 %, Python interpreter 2.6 %, Synchronisation %, Sleeping 0.0 % Zoom '3‘4 EE' Q)

Lustre metrics

Query the kernel for Lustre data activity

Stores read / write rates, volume, file opens and metadata activity

Profiled: clover leaf on 32 processes, 4 nodes, 32 cores (1 per process) Sampled from: Tue Nov 8 2016 07:59:11 (UTC) for 408.1s Hide Metrics...
e |:|
Lustre read transfer o

0B/s
0
Lustre write transfer L

Lustre metadata operations **%

gt i s, % Without

0.05] . |
© i e
Lustre file opens 9.8 i
0.02 |
0 i
08:59:11-09:05:59 (408.109s): Main thread compute 1.9 %, OpenMP 60.7 %, MPI 19.1 %, File 1/0 8.6 %, Synchronisation 0.0 %, OpenMP overhead 0.2 %, Sleeping 9.5 % Zoom % EE <0]
Profiled: clover leaf on 32 processes, 4 nodes, 32 cores (1 per process) Sampled from: Tue Nov 8 2016 16:48:08 (UTC) for 335.5s Hide Metrics...
e |:|
Lustre read transfer U ' 'S
0B/s
0
Lustre write transfer e { .
1.27 MB/s = Eel W t h
= = e |
Lustre metadata operations 193 i
\ .. HDF5
0 |l == L
Lustre file opens aEL I
0.04 E I—
o i
17:48:08-17:53:43 (335.502s): Main thread compute 0.1 %, OpenMP 73.9 %, MPI 21.3 %, File 1/0 1.8 %, OpenMP overhead 0.3 %, Sleeping 2.5 % Zoom @E\; EE &

8 © 2019 ArmLimited a rm

Arm Performance Reports Application Analysis Tool

Analyze all performance
aspectsin a single HTML
or TXT file

Inspect key metrics on
SIMD, multithreading,

10, MPI efficiency and
many more...

9 © 2019 Arm Limited

Lustre

Qualify the
type of

Lustre file operations (per node)

workload

MADbench2 e
16 processes, 1 node
arm sandybridge2
PERFORMAMNCE Mon Nov 4 12:27:50 2013
REPORTS 109 seconds (2 minutes)
/tmp/MADbench2 L~
12-core server/ HDD / 16 readers + writers MPI o
Summary: MADbench2 is |/O-bound in this configuration
The total wallclock ime was spent as follows:
Time spent running application code. High values are usually good.
CPU 48% l This is low: it may be worth improving /O performance first.
Time spent in MPI calls. High values are usually bad
MPI 413% - This is average: check the MPI breakdown for advice on reducing it.
/O 53.9% Time spentin filesystem 1/O. High values are usually bad.
/ = - This is high; check the /O breakdown section for optimization advice
This application run was |/O-bound. A breakdown of this time and advice for investigating further is in the /O section below.

CPU

A breakdown of how the 4.8% total CPU time was spent:
Scalar numericops 49% |

Vector numericops 0.1% |

Memory accesses 95.0% [N

Other 00 |

The per-core performance is memory-bound. Use a profiler to
identify time-consuming loops and check their cache performance.

No time was spent in vectorized instructions. Check the compiler's
vectorization advice to see why key loops could not be vedorized.

110

A breakdown of how the 53 9% total l/O time was spent:

Time in reads 37% |

Time in writes 96.3% [|

Estimated read rate 272 Mb/s [N

Estimated write rate 7.06 Mbis |

Most of the time is spent in write operations, which have a very low
transfer rate. This may be caused by contention for the filesystem or

inefficient access patterns. Use an /O profiler to investigate which
write calls are affected.

MPI
Ofthe 41.3% total time spentin MPI calls:
Time in collective calls 100.0% |

Time in point-to-point calls 0.0%

Estimated collective rate 407 bytes/'s |1
Estimalted point-to-point rate 0 bytes/s |

All of the time is spent in collective calls with a very low transf
This suggests a significant load imbalance is causing

synchronization overhead. You can investigate this further wil
MP profiler.

Memory

Per-process memory usage may also affect scaling:
Mean process memory usage 160 Mb I

Peak process memory usage 173 Mb [

Peak node memoryusage 17.2% Ml

The peak node memory usage is low. You may be able to rec
the total number of CPU hours used by running with fewer Mi
processes and more data on each procsss.

e

A breakdown of how the 53.9% total I/O time was spent:

Time in reads 3.7% |
Time in writes 96.3% [
Estimated read rate 272 Mb/s [
Estimated write rate 7.06 Mb/s |

Most of the time is spent in write operations, which have a very low
transfer rate. This may be caused by contention for the filesystem or
inefficient access patterns. Use an I/O profiler to investigate which

write calls are affected.

Mean write rate 1.2/ Mjs |
Peak write rate 119 M/s
Mean file opens 12.3 /s

Mean metadata operations 0.11 /s

Follow guidance
advices for your
next steps and

maximize output

arm

Profiled: pstreams on 1 process, 1 node, 8 cores (8 per process) Sampled from: Fri Sep 27 2019 12:29:

Extending 10 Metrics - NVRAM Sppheston sy RTINS IR AR

NVRAM Socket 0 write bandwidth *** e

2.43 GB" 5 - Vel L A e i, g e e

Comprehensive set of NVRAM metrics ‘ —
NVRAM Socket 1 write bandwidth °

« Supporting 1LM and 2LM mode 0 Mess

(1]
NVRAM Socket 0 read bandwidth %

3.69 GB/s _ ottt

* Memory bandwidth data : —

NVRAM Socket 1 read bandwidth °°°

« Read and write 0.00 MBJs
« For each socket

i —m

1]

NVRAM Local Load Instructions 577

2.39 M /s e et i o

0 i,

NVRAM Remote Load Instructions %3

* Load instructions e
- NVRAM and DDR DRAM Local Load Instructions 108 - -

5.35 M /s W ""“I'“
. DRAM Remote Load Instructions "7 -
* Memory consumption " Remor 1

 Allocation on NVDIMMs

NVDIMM FSDAXO0 Used Memory >0

2.22 GB
* Compare against existing metrics NVPIMM FSDI Used Memery
- E.g. DRAM memory consumption NVRAM Used Memory 100

10 © 2019 Arm Limited 0.1 %
(1]

a rm | | | | | Thank You

Danke
Merci

CIL
HYHED
Gracias
Kiitos
AR L O
dddiq

15K

NTIN

© 2019 Arm Limited

e

© 2019 Arm Limited

"The Arm trddemarks featuredin this presentation are registéred
trademarks or trademarks of Arm Limited (orits subsidiaries) in
the US and/or elsewhere. Allrightsreserved. All other marks
featured may be trademarks of theirrespective owners.

www.arm.com/company/policies/trademarks

