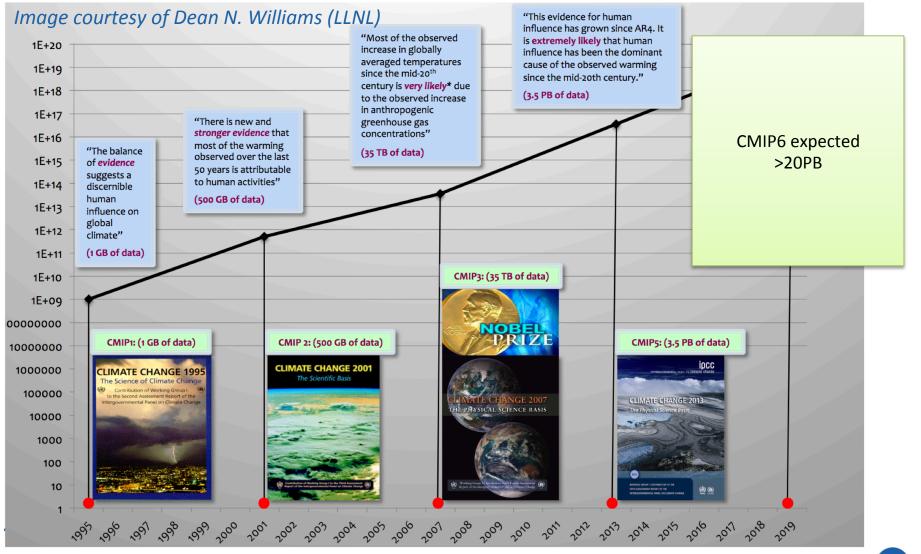
Towards High Performance Data Analytics for Climate Change

S. Fiore¹, <u>D. Elia^{1,2}</u>, C. Palazzo¹, F. Antonio¹, A. D'Anca¹, I. Foster³, G. Aloisio^{1,2}

¹ Euro-Mediterranean Center on Climate Change (CMCC) Foundation, Lecce, Italy
 ² University of Salento, Lecce, Italy
 ³ University of Chicago & Argonne National Laboratory, Chicago, USA

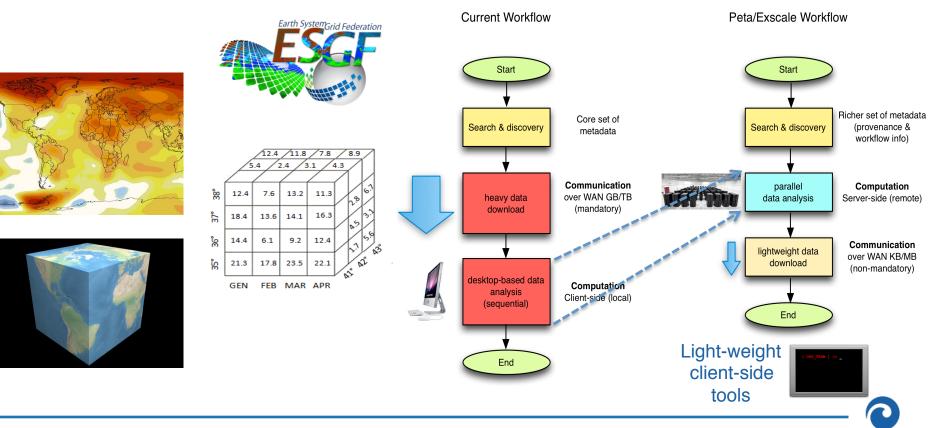
HPC-IODC 2019 Workshop Frankfurt, 20 June 2019

*This work was supported in part by the EU H2020 ESiWACE project (Grant Agreement 675191)


Ophidia (http://ophidia.cmcc.it) is a CMCC Foundation research project addressing data challenges for eScience

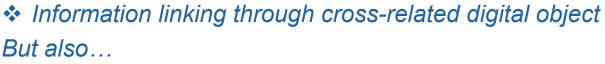
It provides:

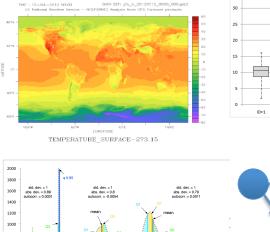
- ✓ a High Performance Data Analytics (HPDA) framework joining HPC paradigms with scientific data analytics approaches
- ✓ support for declarative, in-memory, parallel, server-side data analysis exploiting parallel computing techniques and database approaches
- ✓ end-to-end mechanisms to support complex experiments and large workflows on scientific datacubes, primarily in climate domain

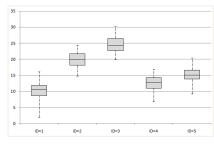


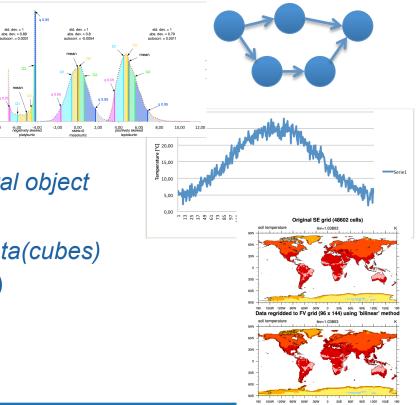
A data perspective of the CMIP experiments

Scientific data analysis workflow & paradigm shift

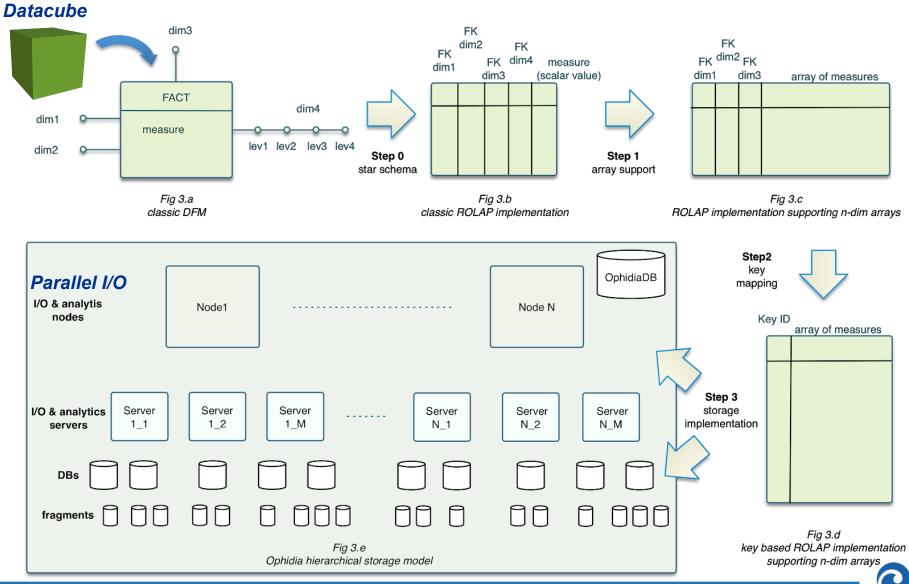

The deluge of data, poses challenges that must be tackled accordingly to cope with bigger data volumes, heterogeneous formats and different frequency in data generation. Time-consuming downloads, client-side & sequential processing are three limiting factors for the traditional scientific data analysis workflow.

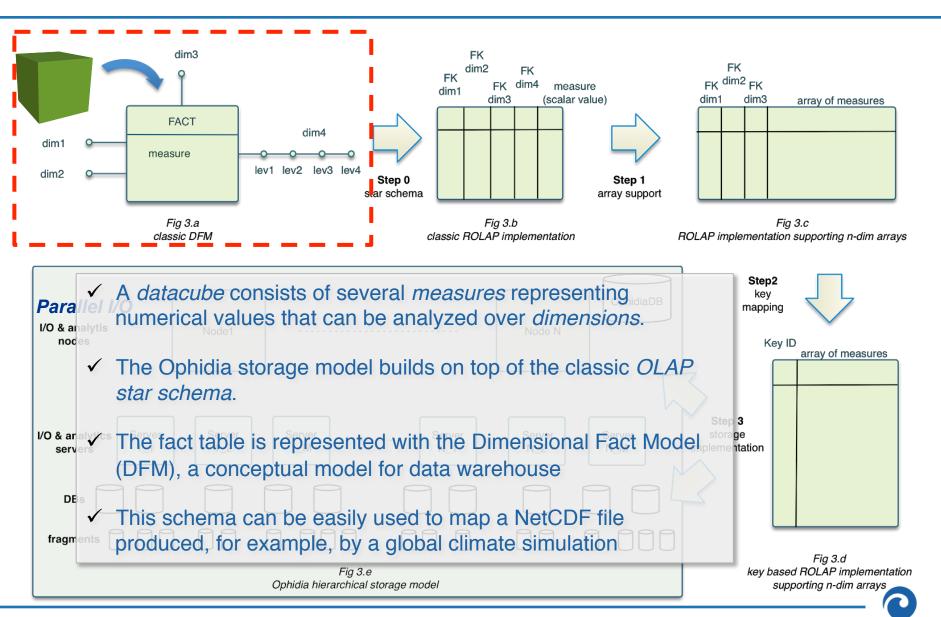

Data analytics challenges and requirements

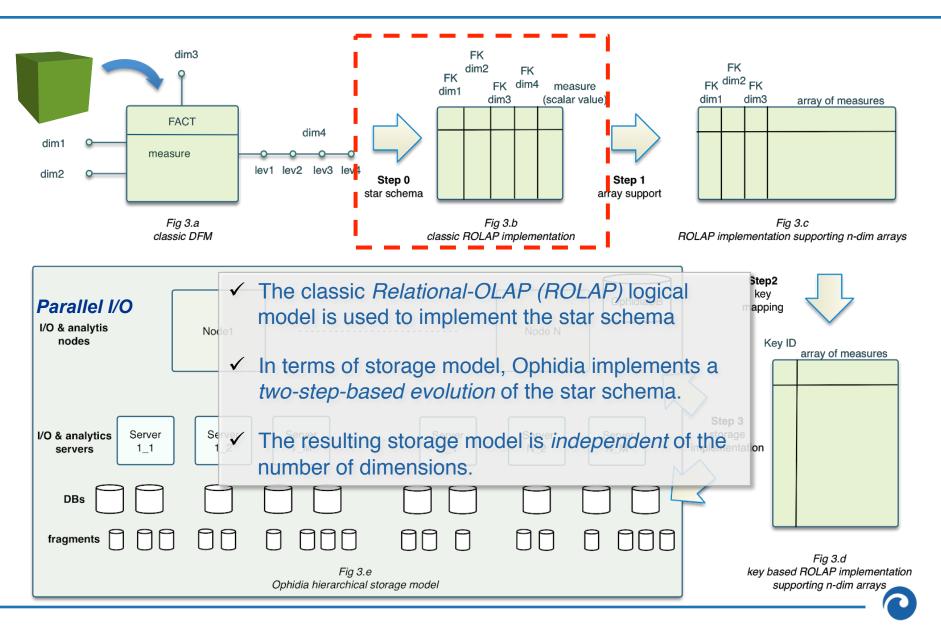

Requirements and needs focus on:

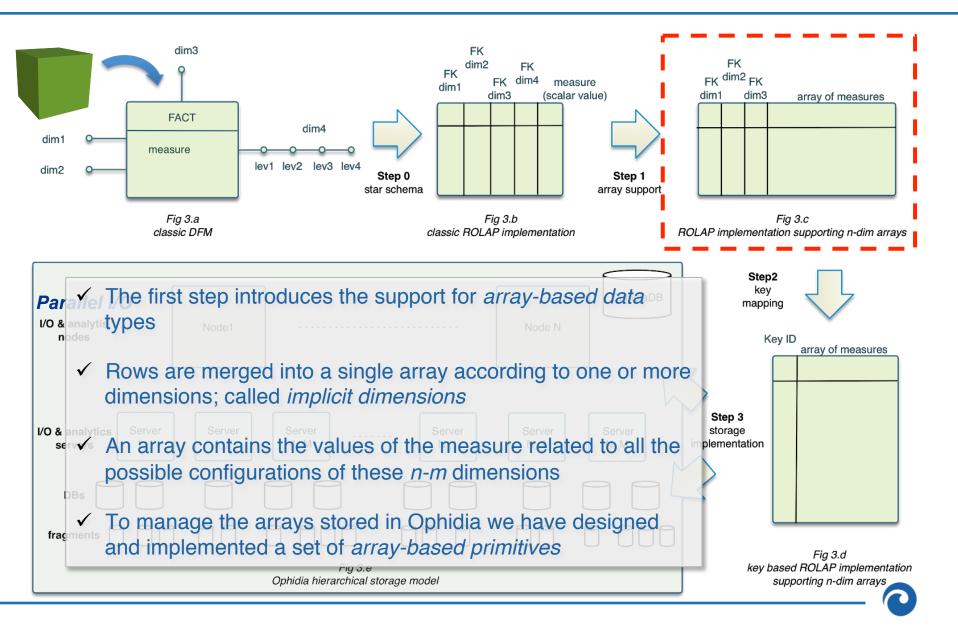

- Time series analysis
- Data subsetting
- Multimodel means
- Massive data reduction
- Ensemble analysis
- Data analytics workflow support
- Metadata management
- Data/experiment provenance

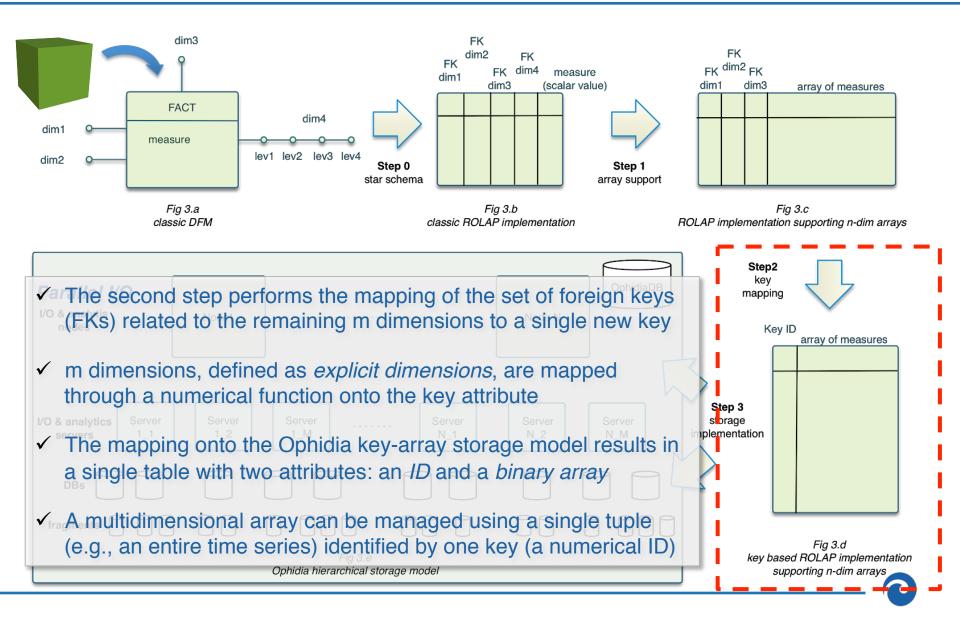
- New storage models for multi-dimensional data(cubes)
- Data partitioning and distribution (parallel I/O)
- Performance (parallel analytics)
- re-usability and extensibility

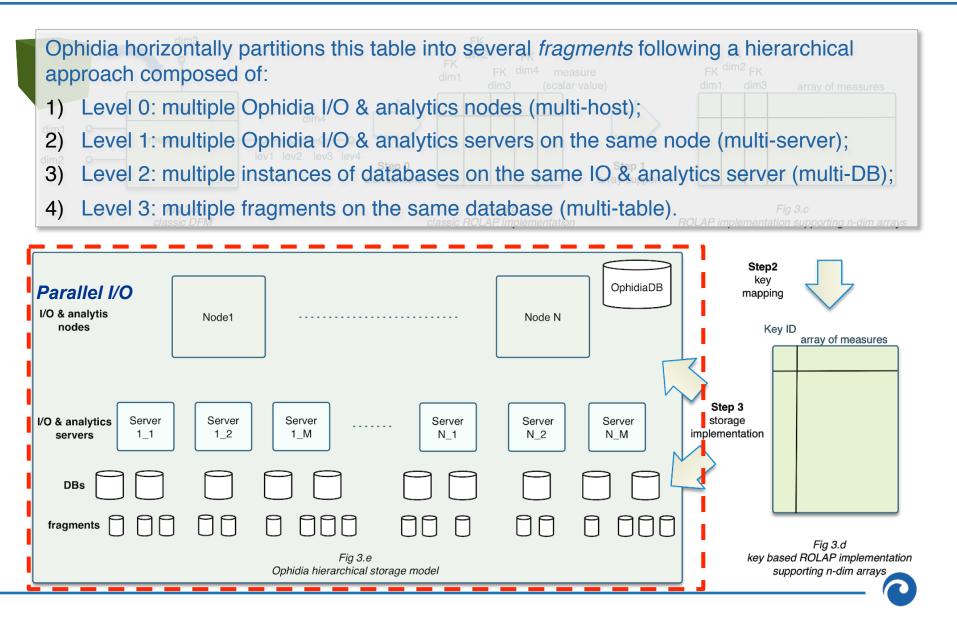


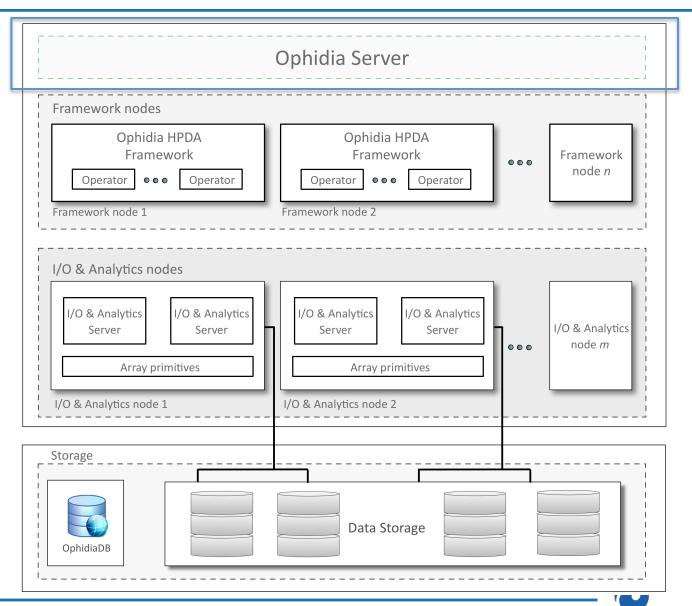


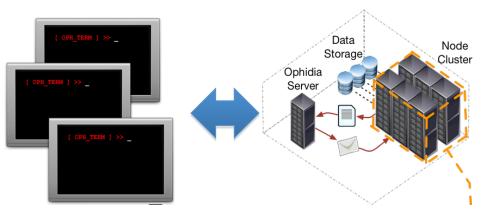



Ophidia in a nutshell


- ✓ HPDA software stack for multi-dimensional scientific data management
- ✓ Server-side, parallel, in-memory I/O & analytics
- Proposes a multi-dimensional storage model and partitioning schema for scientific data leveraging the datacube abstraction
- ✓ eScience oriented features (i.e. climate change): e.g. time series analysis, data subsetting, data aggregation, model intercomparison, OLAP
- Reusability of intermediate results and *provenance* management, targeting Open Science principles
- *Extensible and simple API* to support framework extensions in terms of operators and array-based primitives
- ✓ Programmatic access via *Python APIs* (*batch* & *interactive* data analysis)
- ✓ Support for complex *workflows* / operational chains



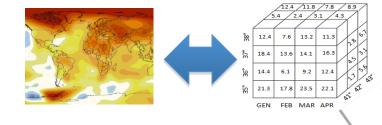


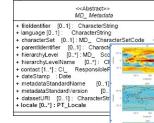


Ophidia architecture: front-end layer

- ✓ Handles clientserver interaction
- ✓ Manages user authN/authZ, sessions and requests
- ✓ Manages task/ workflow execution
- ✓ Remote interactions with a CLI, WPS clients and Python modules

Server-side paradigm and the datacube abstraction


Oph_Term: a terminal-like commands interpreter serving as a client for the Ophidia framework


PyOphidia: a Python interface for datacube management & analytics with Ophidia

Ophidia framework: *declarative*, parallel server-side processing

Through **oph_term/PyOphidia** the user run ("send") commands ("operators") to the Ophidia framework to manipulate datasets ("datacubes")

System metadata of the datacube (size, distribution, etc.)

User metadata information

Metadata provenance

Programmatic access through the PyOphidia class

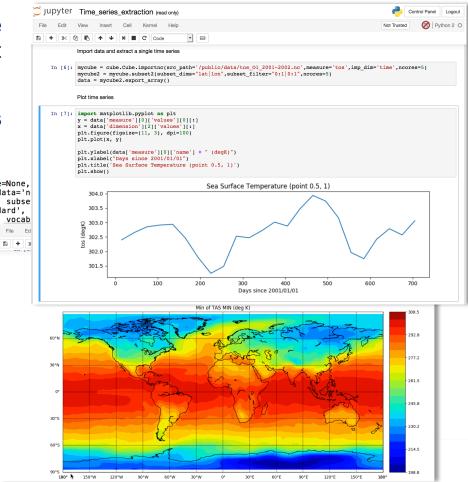
 PyOphidia provides a Python interface to submit commands to the Ophidia Server and to retrieve/deserialize the results (e.g. in Jupyter Notebooks)

✓ Two modules implemented:

- Client: connect to the server, navigate the ophidia file system, submit workflows, manage sessions, etc.
- Cube class: manipulate cubes objects through a Python abstraction

class Cube():

"""Cube(container='-', cwd=None, exp_dim='auto', host_partition='auto', imp_dim='auto', measure=None, exp_concept_level='c', filesystem='auto', grid='-', imp_concept_level='c', import_metadata='n ioserver='mysql_table', ncores=1, ndb=1, ndbms=1, nfrag=0, nhost=0, subset_dims='none', subse subset_type='index', exec_mode='sync', base_time='1900-01-01 00:00'00', calendar='standard', leap_year=0, month_lengths='31,28,31,30,31,31,30,31,30,31', run='yes', units='d', vocab pid=None, check_grid='no', display=False) -> obj

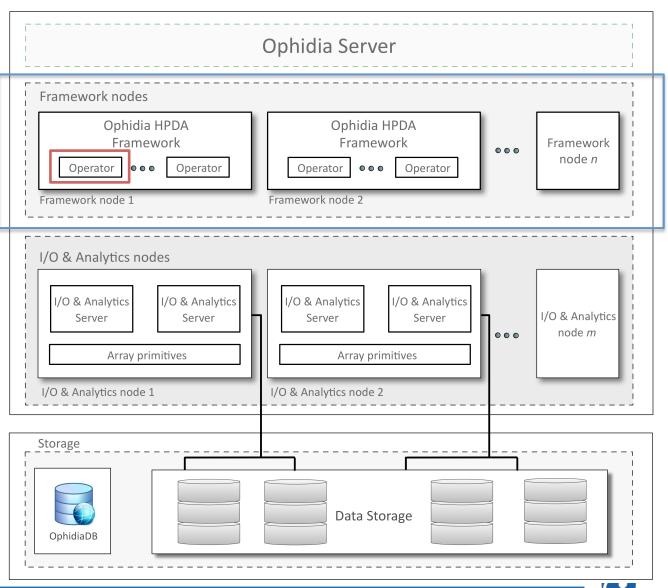

Attributes:

pid: cube PID creation date: creation date of the cube measure: name of the variable imported into the cube measure type: measure data type level: number of operations between the original imported cube and the actual cube nfragments: total number of fragments source_file: parent of the actual cube hostxcube: number of hosts associated with the cube dbmsxhost: number of DBMS instances on each host dbxdbms: number of databases for each DBMS fragxdb: number of fragments for each database rowsxfrag: number of rows for each fragment elementsxrow: number of elements for each row compressed: 'yes' for a compressed cube, 'no' otherwise size: size of the cube nelements: total number of elements dim info: list of dict with information on each cube dimension

Class Attributes:

client: instance of class Client through which it is possible to submit all requests

https://pypi.org/project/PyOphidia/ https://anaconda.org/conda-forge/pyophidia

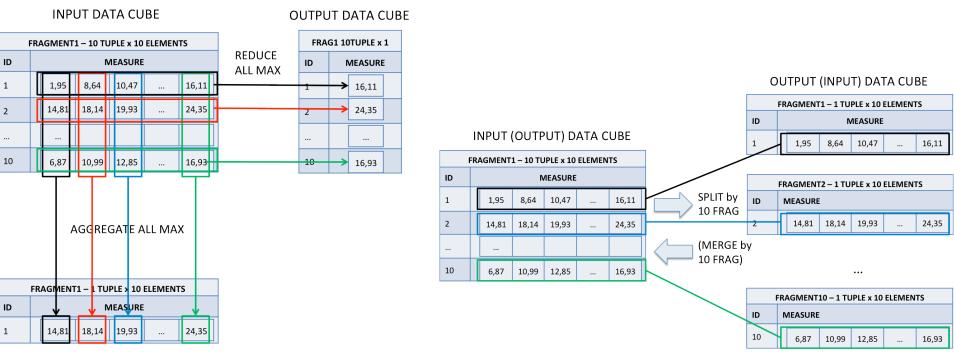


Ophidia architecture: framework layer

 ✓ The Ophidia analytics framework can be executed with multiple processes/ threads

 ✓ Provides the environment for the execution of parallel MPI/OpenMP-based operators

 ✓ Operators manipulate the entire set of fragments associated to a datacube

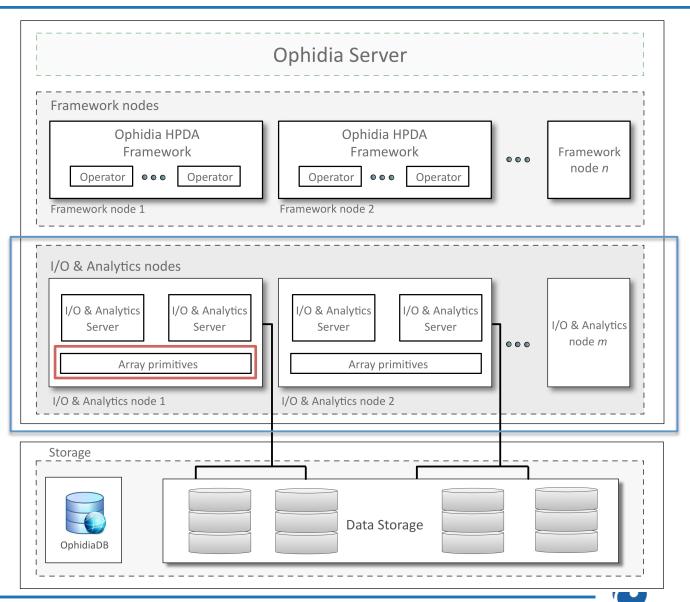


The Ophidia operators

CLASS	PROCESSING TYPE	OPERATOR(S)
1/0	Parallel	OPH_IMPORTNC, OPH_IMPORTFITS, OPH_EXPORTNC, OPH_CONCATNC, OPH_RANDUCUBE
Time series processing	Parallel	OPH_APPLY
Datacube reduction	Parallel	OPH_REDUCE, OPH_REDUCE2, OPH_AGGREGATE
Datacube subsetting	Parallel	OPH_SUBSET
Datacube combination	Parallel	OPH_INTERCUBE, OPH_MERGECUBES
Datacube structure manipulation	Parallel	OPH_SPLIT, OPH_MERGE, OPH_ROLLUP, OPH_DRILLDOWN, OPH_PERMUTE
Datacube/file system management	Sequential	OPH_DELETE, OPH_FOLDER, OPH_FS
Metadata management	Sequential	OPH_METADATA, OPH_CUBEIO, OPH_CUBESCHEMA
Datacube exploration	Sequential	OPH_EXPLORECUBE, OPH_EXPLORENC

About 50 operators for data and metadata processing

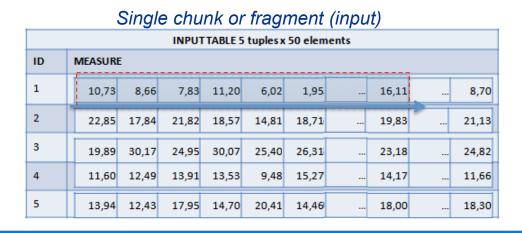
The "data" operators


OUTPUT DATA CUBE

INPUT DATA CUBE

F	FRAGMENT10 – 10 TUPLE x 10 ELEMENTS				OUTPUT DATA CUBE								
ID	ID MEASURE				SUBSET FRAGMENT10 - 2 TUPLE × 10 ELEMI			ELEMEN	TS				
1		1,95	8,64	10,47	 16,11	Filter 1:2	ID			N	IEASURE		
2		14,81	18,14	19,93	 24,35		1		1,95	8,64	10,47		16,11
							2	1	14,81	18,14	19,93		24,35
10		6,87	10,99	12,85	 16,93								

Ophidia architecture: I/O & analytics layer


- ✓ Multiple I/O & analytics nodes execute one or more servers
- ✓ Servers run the array-based primitives (UDF)
- ✓ Server engine can transparently interface to different storage back-ends
- ✓ Support for a native in-memory arraybased analytics & I/O engine

Array-based primitives

- ✓ Ophidia provides a wide set of array-based primitives (around 100) to perform:
 - data summarization, sub-setting, predicates evaluation, statistical analysis, array concatenation, algebraic expression, regression, etc.
- ✓ Bit-oriented plugins have also been implemented to manage binary datacubes
- Primitives come as plugins and are applied on a single datacube chunk (fragment)
- Primitives can be nested to get more complex functionalities

oph_boxplot(oph_subarray(oph_uncompress(measure), 1,18), "OPH_DOUBLE")

Single chunk or fragment (output)

	OUTP	OUTPUT TABLE 5 tuples x 5 elements (summary)									
_	ID	MEASURE	MEASURE								
	1	1,95	8,64	10,47	11,87	16,11					
	2	14,81	18,14	19,93	21,66	24,35					
	3	19,89	22,74	24,24	26,45	30,17					
	4	6,87	10,99	12,85	14,28	16,93					
	5	9,23	13,87	15,05	16,61	20,41					

0

Ophidia architecture: storage layer

- Distributed hardware resources to manage storage
- Data partitioned in a hierarchical fashion over the storage according to the storage model & partitioning schema

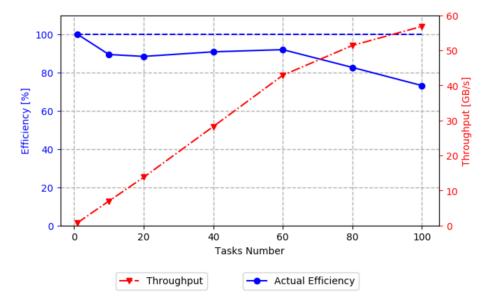
OphidiaDB is the system catalog: maps data fragmentation and tracks metadata

Framework nodes	
Ophidia HPDA Framework Operator ••• Operator Framework node 1	Ophidia HPDA Framework Operator Image: Comparison of the second seco
I/O & Analytics nodes I/O & Analytics Server I/O & Analytics Server Array primitives I/O & Analytics node 1	I/O & Analytics Server Array primitives I/O & Analytics N/O & Analytics NO & Analytics I/O & Analytics
Storage	Data Storage

Evaluation of scalability of a core and one of the most used Ophidia operators with the *in-memory server*:

- ✓ compute parallel *data reduction* over a datacube (up to 1TB):
 - ✓ average value of the time series, for each point in a 3D spatial domain (lat, lon, height)
- ✓ all values are averaged across multiple run (with a 95% confidence interval whose maximum relative error is at most 7%)

In Ophidia most data operators are executed in a similar fashion

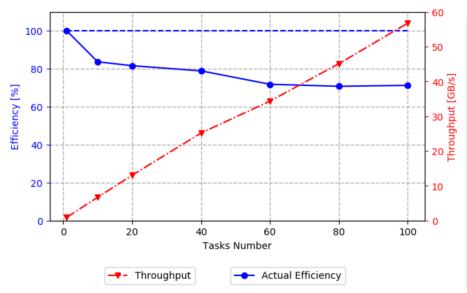

Benchmark executed on a cluster dedicated for in-memory analytics setup @ CMCC SuperComputing Centre

Test environment specs					
Number of nodes	5				
RAM	1.3TB (256GB/node)				
Number of cores	100 (2x10 cores/node - Intel Xeon CPU)				
Storage size	60TB shared storage (GlusterFS)				
Network	10Gb/s dedicate network				
Ophidia deployment	an instance of a I/O & analytics server/node				

Experimental results: strong scalability

Evaluate scalability by measuring the OPH_REDUCE2 execution time on a fixed problem size while increasing the number of executed parallel tasks

- ✓ datacube size about 1TB (270 x 10⁹ floating point, organized into 23 x 10⁶ time series of 11.7 x 10³ elements each)
- data partitioned into 1200 fragments evenly distributed over the 5 I/O & analytics servers (200GB of data/node)

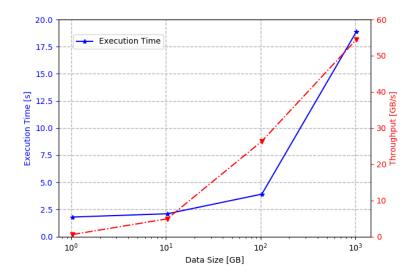

Tasks number	Eexecution time [s]	Efficiency [%]	Throughput [GB/s]
1	1290.8	100	0.8
10	144.3	89.4	6.9
20	73	88.5	13.7
40	35.5	90.8	28.2
60	23.4	91.8	42.9
80	19.5	82.7	51.4
100	17.6	73.2	56.8

Partitioning schema allows to effectively scale up with the data size over multiple nodes

Experimental results: weak scalability

Evaluate scalability by measuring OPH_REDUCE2 execution time while scaling up the data size along with the number of parallel tasks

- ✓ the number of fragments/task is fixed to 1 (20 frags/I/O & analytics servers)
- Each fragment contains about 2.8 x 10⁹ floating point values organized into 240 x 10³ time series of 11.7 x 10³ elements each for a total of 10.4GB of data


Tasks number		Execution time [s]	Efficiency [%]	Throughput [GB/s]	Data Size [GB]
1	1	13.1	100	0.8	10.4
10	1	15.7	83.6	6.7	104.4
20	1	16.1	81.6	13.0	208.9
40	2	16.6	78.8	25.1	417.7
60	3	18.3	71.8	34.4	626.6
80	4	18.5	70.7	45.1	835.4
100	5	18.4	71.2	56.7	1044.3

Storage model implementation allows good level of scalability over multiple nodes (efficiency does not degrade as more resources are added)

Experimental results: array-oriented tests

Evaluate scalability by measuring OPH_REDUCE2 execution time while increasing the array length, with fixed data partitioning and number of tasks

- the data is split into 100 fragments evenly distributed over 5 I/O & Analytics servers and 100 parallel tasks are always used (i.e. 1 frag/task)
- Each fragment consists of 230 x 10³ time series each, with increasing length (one order of magnitude each time)

Array length	Execution time [s]	Throughput [GB/s]	Data Size [GB]
12	1.8	0.6	1
120	2.1	4.9	10.3
1200	3.9	26.4	103
12000	18.9	54.5	1030

The array-oriented physical data organization proves to be extremely efficient in the management of (very) long time series

Summary & future activities

Recap

- ✓ Ophidia provides a HPDA framework joining HPC paradigms with scientific data analysis approaches for parallel data analytics
- ✓ Implements a multi-dimensional storage model where data is partitioned and hierarchically distributed
- Experimental results show how the Ophidia data distribution and partitioning enable the operator to scale up to the full capacity of our cluster

Future activities

- Large-scale benchmark on Marenostrum (PRACE Tier0 machine at Barcelona Supercomputing Center) in the context of the ESiWACE projects
- Further extension of Ophidia to support the Earth System Data Middleware interface, developed in the ESiWACE projects

http://ophidia.cmcc.it

@OphidiaBigData

www.youtube.com/user/OphidiaBigData

https://github.com/OphidiaBigData

ophidia-info at cmcc.it

