
Towards	High	Performance	Data	
Analy8cs	for	Climate	Change		

S. Fiore1, D. Elia1,2, C. Palazzo1, F. Antonio1, !
A. D’Anca1, I. Foster3, G. Aloisio1,2 !
!
1 Euro-Mediterranean Center on Climate Change (CMCC) Foundation, Lecce, Italy
2 University of Salento, Lecce, Italy
3 University of Chicago & Argonne National Laboratory, Chicago, USA
!

HPC-IODC 2019 Workshop

Frankfurt, 20 June 2019

*This work was supported in part by the EU H2020 ESiWACE project (Grant Agreement 675191) !

The Ophidia project!

Ophidia (http://ophidia.cmcc.it) is a CMCC Foundation research
project addressing data challenges for eScience !
!
It provides: !
ü  a High Performance Data Analytics (HPDA) framework joining HPC

paradigms with scientific data analytics approaches !
ü  support for declarative, in-memory, parallel, server-side data analysis

exploiting parallel computing techniques and database approaches!
ü  end-to-end mechanisms to support complex experiments and large

workflows on scientific datacubes, primarily in climate domain !

A data perspective of the CMIP experiments !

CMIP6	expected		
>20PB		

Image	courtesy	of	Dean	N.	Williams	(LLNL)	

	

Scientific data analysis workflow & paradigm shift

The deluge of data, poses challenges that must be tackled accordingly to cope with
bigger data volumes, heterogeneous formats and different frequency in data generation. !
Time-consuming downloads, client-side & sequential processing are three limiting
factors for the traditional scientific data analysis workflow. !
!
!

Light-weight!
client-side !

tools!

Requirements and needs focus on:
v  Time series analysis
v  Data subsetting
v Multimodel means
v Massive data reduction
v  Ensemble analysis
v  Data analytics workflow support
v Metadata management
v  Data/experiment provenance
v  Information linking through cross-related digital object
But also…
v  New storage models for multi-dimensional data(cubes)
v  Data partitioning and distribution (parallel I/O)
v  Performance (parallel analytics)
v  re-usability and extensibility

Data analytics challenges and requirements!

Ophidia in a nutshell!

ü  HPDA software stack for multi-dimensional scientific data management!

ü  Server-side, parallel, in-memory I/O & analytics!

ü  Proposes a multi-dimensional storage model and partitioning schema for
scientific data leveraging the datacube abstraction!

ü  eScience oriented features (i.e. climate change): e.g. time series analysis,
data subsetting, data aggregation, model intercomparison, OLAP!

ü  Reusability of intermediate results and provenance management, targeting
Open Science principles!

ü  Extensible and simple API to support framework extensions in terms of
operators and array-based primitives!

ü  Programmatic access via Python APIs (batch & interactive data analysis)!

ü  Support for complex workflows / operational chains!

Storage model implementation!

Parallel I/O

Datacube

Storage model implementation!

Parallel I/O
ü  A datacube consists of several measures representing

numerical values that can be analyzed over dimensions. !

ü  The Ophidia storage model builds on top of the classic OLAP
star schema. !

ü  The fact table is represented with the Dimensional Fact Model
(DFM), a conceptual model for data warehouse !

ü  This schema can be easily used to map a NetCDF file
produced, for example, by a global climate simulation!

Storage model implementation!

Parallel I/O
ü  The classic Relational-OLAP (ROLAP) logical

model is used to implement the star schema!

ü  In terms of storage model, Ophidia implements a
two-step-based evolution of the star schema. !

ü  The resulting storage model is independent of the
number of dimensions.!

Storage model implementation!

Parallel I/O ü  The first step introduces the support for array-based data
types!

ü  Rows are merged into a single array according to one or more
dimensions; called implicit dimensions!

ü  An array contains the values of the measure related to all the
possible configurations of these n-m dimensions!

ü  To manage the arrays stored in Ophidia we have designed
and implemented a set of array-based primitives !

Storage model implementation!

Parallel I/O ü  The second step performs the mapping of the set of foreign keys
(FKs) related to the remaining m dimensions to a single new key!

ü  m dimensions, defined as explicit dimensions, are mapped
through a numerical function onto the key attribute!

ü  The mapping onto the Ophidia key-array storage model results in
a single table with two attributes: an ID and a binary array!

ü  A multidimensional array can be managed using a single tuple
(e.g., an entire time series) identified by one key (a numerical ID) !

Storage model implementation!

Parallel I/O

Ophidia horizontally partitions this table into several fragments following a hierarchical
approach composed of:!
1)  Level 0: multiple Ophidia I/O & analytics nodes (multi-host);!
2)  Level 1: multiple Ophidia I/O & analytics servers on the same node (multi-server);!
3)  Level 2: multiple instances of databases on the same IO & analytics server (multi-DB);!
4)  Level 3: multiple fragments on the same database (multi-table).!

Ophidia architecture: front-end layer!

ü  Handles client-
server interaction!

ü  Manages user
authN/authZ,
sessions and
requests!

ü  Manages task/
workflow execution!

ü  Remote interactions
with a CLI, WPS
clients and Python
modules!

Server-side paradigm and the datacube abstraction	
	

14

Oph_Term: a terminal-like commands
interpreter serving as a client for the Ophidia
framework!
!
PyOphidia: a Python interface for datacube
management & analytics with Ophidia!
!
Ophidia framework: declarative, parallel
server-side processing!
!
Through oph_term/PyOphidia the user run
(“send”) commands (“operators”) to the
Ophidia framework to manipulate datasets
(“datacubes”)!
 !

User metadata
information

Metadata provenance

System
metadata of the
datacube (size,
distribution, etc.)

ü  PyOphidia provides a Python interface to submit commands to the Ophidia Server

and to retrieve/deserialize the results (e.g. in Jupyter Notebooks)

Programmatic access through the PyOphidia class	

ü  Two modules implemented:
ü  Client: connect to the server, navigate

the ophidia f i le system, submit
workflows, manage sessions, etc.

ü  Cube class: manipulate cubes objects
through a Python abstraction

h2ps://pypi.org/project/PyOphidia/		
h2ps://anaconda.org/conda-forge/pyophidia		

Ophidia architecture: framework layer!
!
ü  The Ophidia

analytics framework
can be executed with
multiple processes/
threads !

ü  Provides the
environment for the
execution of parallel
MPI/OpenMP-based
operators!

ü  Operators
manipulate the entire
set of fragments
associated to a
datacube !

The Ophidia operators!

About 50 operators for data and metadata processing

CLASS	 PROCESSING	TYPE	 OPERATOR(S)		

I/O	 Parallel	 OPH_IMPORTNC,	OPH_IMPORTFITS,	
OPH_EXPORTNC,	OPH_CONCATNC,	
OPH_RANDUCUBE	

Time	series	processing	 Parallel	 OPH_APPLY	

Datacube	reduc?on	 Parallel	 OPH_REDUCE,	OPH_REDUCE2,	OPH_AGGREGATE	

Datacube	subse@ng	 Parallel	 OPH_SUBSET	

Datacube	combina?on		 Parallel	 OPH_INTERCUBE,	OPH_MERGECUBES	

Datacube	structure	
manipula?on	

Parallel	 OPH_SPLIT,	OPH_MERGE,	OPH_ROLLUP,	
OPH_DRILLDOWN,	OPH_PERMUTE	

Datacube/file	system	
management	

SequenVal	 OPH_DELETE,	OPH_FOLDER,	OPH_FS		

Metadata	management	 SequenVal	 OPH_METADATA,	OPH_CUBEIO,	OPH_CUBESCHEMA	

Datacube	explora?on	 SequenVal	 OPH_EXPLORECUBE,	OPH_EXPLORENC	

The “data” operators!

Ophidia architecture: I/O & analytics layer!

ü  Multiple I/O &
analytics nodes
execute one or
more servers!

ü  Servers run the
array-based
primitives (UDF)!

!
ü  Server engine can

transparently
interface to different
storage back-ends !

!
ü  Support for a native

in-memory array-
based analytics & !

 I/O engine!
!

ü  Ophidia provides a wide set of array-based primitives (around 100) to perform:!
ü  data summarization, sub-setting, predicates evaluation, statistical analysis, array

concatenation, algebraic expression, regression, etc.!

ü  Bit-oriented plugins have also been implemented to manage binary datacubes !
ü  Primitives come as plugins and are applied on a single datacube chunk (fragment)!
ü  Primitives can be nested to get more complex functionalities!

Array-based primitives

oph_boxplot(oph_subarray(oph_uncompress(measure), 1,18), "OPH_DOUBLE”)

Single chunk or fragment (input) Single chunk or fragment (output)

Ophidia architecture: storage layer!

ü  Distributed
hardware resources
to manage storage!

ü  Data partitioned in a
hierarchical fashion
over the storage
according to the
storage model &
partitioning schema!

!

ü  OphidiaDB is the
system catalog:
maps data
fragmentation and
tracks metadata!

Performance evaluation!

Evaluation of scalability of a core and
one of the most used Ophidia operators
with the in-memory server:!
ü  compute parallel data reduction

over a datacube (up to 1TB):!

ü  average value of the time series, for
each point in a 3D spatial domain
(lat, lon, height)!

ü  all values are averaged across
multiple run (with a 95% confidence
interval whose maximum relative
error is at most 7%) !

In Ophidia most data operators are
executed in a similar fashion!

Test	environment	specs	

Number	of	nodes	 5	

RAM	 1.3TB	(256GB/node)	

Number	of	cores	
100	(2x10	cores/node	-	

Intel	Xeon	CPU)	

Storage	size	
60TB	shared	storage	

(GlusterFS)	

Network	
10Gb/s	dedicate	

network	

Ophidia	deployment	
an	instance	of	a	I/O	&	
analyVcs	server/node	

Benchmark executed on a cluster
dedicated for in-memory analytics
setup @ CMCC SuperComputing
Centre !

Experimental results: strong scalability!

Evaluate scalability by measuring the OPH_REDUCE2 execution time on a fixed
problem size while increasing the number of executed parallel tasks!
ü  datacube size about 1TB (270 x 109 floating point, organized into 23 x 106 time series

of 11.7 x 103 elements each)!

ü  data partitioned into 1200 fragments evenly distributed over the 5 I/O & analytics
servers (200GB of data/node) !

Partitioning schema allows to effectively scale up with the data size over
multiple nodes!

Tasks	
number	

Eexecu8on	
8me	[s]	

Efficiency	
[%]	

Throughput	
[GB/s]	

1	 1290.8	 100	 0.8	

10	 144.3	 89.4	 6.9	

20	 73	 88.5	 13.7	

40	 35.5	 90.8	 28.2	

60	 23.4	 91.8	 42.9	

80	 19.5	 82.7	 51.4	

100	 17.6	 73.2	 56.8	

Experimental results: weak scalability!

Evaluate scalability by measuring OPH_REDUCE2 execution time while scaling
up the data size along with the number of parallel tasks!
ü  the number of fragments/task is fixed to 1 (20 frags/I/O & analytics servers) !

ü  Each fragment contains about 2.8 x 109 floating point values organized into 240 x 103
time series of 11.7 x 103 elements each for a total of 10.4GB of data!

Storage model implementation allows good level of scalability over multiple
nodes (efficiency does not degrade as more resources are added) !

Tasks	
number	

Nodes	
number	

Execu8on	
8me	[s]	

Efficiency	
[%]	

Throughput	
[GB/s]	

Data	Size	
[GB]	

1	 1	 13.1	 100	 0.8	 10.4	

10	 1	 15.7	 83.6	 6.7	 104.4	

20	 1	 16.1	 81.6	 13.0	 208.9	

40	 2	 16.6	 78.8	 25.1	 417.7	

60	 3	 18.3	 71.8	 34.4	 626.6	

80	 4	 18.5	 70.7	 45.1	 835.4	

100	 5	 18.4	 71.2	 56.7	 1044.3	

Experimental results: array-oriented tests!

The array-oriented physical data organization proves to be extremely
efficient in the management of (very) long time series !

Array	length	 Execu8on	
8me	[s]	

Throughput	
[GB/s]	

Data	
Size	[GB]	

12	 1.8	 0.6	 1	

120	 2.1	 4.9	 10.3	

1200	 3.9	 26.4	 103	

12000	 18.9	 54.5	 1030	

Evaluate scalability by measuring OPH_REDUCE2 execution time while
increasing the array length, with fixed data partitioning and number of tasks !
ü  the data is split into 100 fragments evenly distributed over 5 I/O & Analytics servers and

100 parallel tasks are always used (i.e. 1 frag/task)!

ü  Each fragment consists of 230 x 103 time series each, with increasing length (one order
of magnitude each time)!

Summary & future activities!

Recap!

ü  Ophidia provides a HPDA framework joining HPC paradigms with
scientific data analysis approaches for parallel data analytics !

ü  Implements a multi-dimensional storage model where data is partitioned
and hierarchically distributed !

ü  Experimental results show how the Ophidia data distribution and
partitioning enable the operator to scale up to the full capacity of our
cluster !

Future activities !
!
ü  Large-scale benchmark on Marenostrum (PRACE Tier0 machine at

Barcelona Supercomputing Center) in the context of the ESiWACE
projects !

ü  Further extension of Ophidia to support the Earth System Data
Middleware interface, developed in the ESiWACE projects!

Thanks

http://ophidia.cmcc.it

@OphidiaBigData

www.youtube.com/user/OphidiaBigData

https://github.com/OphidiaBigData

 ophidia-info at cmcc.it

