
Adrian Jackson

@adrianjhpc

a.jackson@epcc.ed.ac.uk

EPCC, The University of Edinburgh

http://www.nextgenio.eu

An Architecture for High Performance
Computing and Data Systems using
Byte-Addressable Persistent Memory

Warning!

• Terminology might be annoying:
• NVDIMM
• NVRAM
• PM (Persistent Memory)
• SCM (Storage Class Memory (people get upset about

this term))
• B-APM (Byte-Addressable Persistent Memory (my

favourite))

• My fault, but people will argue which is the most
appropriate

• So using them all to annoy as many people as possible

I/O Performance

• https://www.archer.ac.uk/documentation/white-papers/parallelIO-
benchmarking/ARCHER-Parallel-IO-1.0.pdf

I/O Performance – Small writes

• Plot of average (across processes) run times of
individual I/O regions for visualisation I/O

• Same code executed for all runs

• I/O varies significantly in some cases:

• Worst case
~12x

• Best case
~2x

I/O Performance – Large writes

• Plot of run times of individual I/O regions for checkpoint I/O
• Same code executed for all runs

• I/O varies in a similar pattern to the visualisation I/O
• Variation more extreme (fastest is faster)
• Average more consistent

• Checkpoint
I/O less
frequent but
much quicker

• Much
higher data
volumes

I/O Performance

Application I/O patterns

Individual I/O
Operation

I/O Runtime
Contribution

Burst Buffer

• Non-volatile already becoming part of HPC hardware
stack

• SSDs offer high I/O performance but at a cost
• How to utilise in large scale systems?

• Burst-buffer hardware accelerating parallel filesystem
• Cray DataWarp

• DDN IME (Infinite Memory Engine)

Burst buffer

high performance network

external filesystem

compute nodes

high performance network

external filesystem

compute nodes

burst
filesystem

Future storage

All-flash scratch filesystem
• 30-petabyte Lustre

filesystem
• 4 TB/sec

Perlmutter

Moving beyond burst buffer

• Storage is moving to the node rather than the
filesystem

• Argonne Theta machine has 128GB SSD in each
compute node

high performance network

external filesystem

compute nodes

Moving beyond burst buffer

• Aurora will feature next generation Intel
DPCMM

Enabling new I/O

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Lustre End Lustre Every
Iteration

Optane End Optane
Every

Iteration

SSD End SSD Every
Iteration

Mem End Mem Every
Iteration

Fr
ac

tio
n

of
 ru

nt
im

e
sp

en
t o

n
I/

O

I/O time

New Memory Hierarchies

• High bandwidth, on processor memory
• Large, high bandwidth cache
• Latency cost for individual access may be an

issue

• Main memory
• DRAM
• Costly in terms of energy, potential for lower

latencies than high bandwidth memory

• Byte-addressable Persistent Memory
• High capacity, ultra fast storage
• Low energy (when at rest) but still slower

than DRAM
• Available through same memory controller

as main memory, programs have access to
memory address space

Memory

Storage

Cache

HBW Memory

Slow Storage

Cache

NVRAM

Fast Storage

Memory

HBW Memory

Slow Storage

Cache

NVRAM

HBW Memory

Slow Storage

NVRAM

NVRAM

Non-volatile memory

• Non-volatile RAM
• Intel DCPMM technology
• STT-RAM

• Much larger capacity than DRAM
• Hosted in the DRAM slots, controlled by a standard

memory controller

• Slower than DRAM by a small factor, but
significantly faster than SSDs

• STT-RAM
• Read fast and low energy
• Write slow and high energy

• Trade off between durability and performance
• Can sacrifice data persistence for faster writes

SRAM vs NVRAM

• SRAM used for cache

• High performance but costly
• Die area
• Energy leakage

• DRAM lower cost but lower performance
• Higher power/refresh requirement

• NVRAM technologies offer
• Much smaller implementation area
• No refresh/ no/low energy leakage
• Independent read/write cycles

• NVDIMM offers
• Persistency
• Direct access (DAX)

Memory levels

• Intel DCPMM has different memory modes*
(like MCDRAM on KNL):

• Two-level memory (2LM) (Memory Mode)

• One-level memory (1LM) (App Direct Mode)

17

Cache Memory
Regions

Processor

DRAM

O
S M

ain M
em

ory
DCPMM

DRAM
Memory

Processor

DPCMM

Application
Direct

Regions

O
S M

ain M
em

ory

*https://www.google.com/patents/US20150178204

Intel DCPMM

• The “memory” usage model allows for the
extension of the main memory

• The data is volatile like normal DRAM based main
memory

• The “storage” usage model which supports the
use of NVRAM like a classic block device

• E.g. like a very fast SSD

• The “application direct” (DAX) usage model
maps persistent storage from the NVRAM
directly into the main memory address space

• Direct CPU load/store instructions for persistent
main memory regions

Programming DCPMM

• Block memory mode
• Standard filesystem api’s
• Will incur block mode overheads (not byte

granularity, kernel interrupts, etc…)

• App Direct/DAX mode
• Volatile memory access can use standard

load/store
• PMDK

• pmem.io
• Persistent

load/store
• memory

mapped file
like
functionality

Exploiting distributed storage

NEXTGenIO

Project
• European Funded

Research & Innovation
Action

• 42 month duration

• €8.1 million

• Approx. 50% committed
to hardware development

Partners
• EPCC

• INTEL

• FUJITSU

• BSC

• TUD

• ARM/ALLINEA

• ECMWF

• ARCTUR

NGIO

• Whole ecosystem development
• Support hardware and software, support users in

porting and optimising application

• Hardware development
• Fujitsu motherboard and BIOS work
• Intel memory and processor hardware

• Software development
• Applications
• Scheduler
• Filesystems
• Data scheduler
• Profilers and debuggers

Systemware architecture

NGIO Prototype

• 34 node cluster with
3TB of Intel
DCPMM per node

• 2 CPUS per node,
each with 1.5TB of
DCPMM and 96GB
of DRAM

• External Lustre
filesystem

Using distributed storage
• Without changing applications

• Large memory space/in-memory database etc…
• Local filesystem

• Users manage data themselves
• No global data access/namespace, large number of files
• Still require global filesystem for persistence

Using distributed storage

• Without changing applications
• Filesystem buffer

• Pre-load data into NVRAM from filesystem
• Use NVRAM for I/O and write data back to filesystem at

the end
• Requires systemware to preload and postmove data
• Uses filesystem as namespace manager

NGIO Data
Scheduler
(NORNS) and
Slurm
integration

Using distributed storage

• Without changing applications
• Global filesystem

• Requires functionality to create and tear down global
filesystems for individual jobs

• Requires filesystem that works across nodes
• Requires functionality to preload and postmove filesystems
• Need to be able to support multiple filesystems across

system

NGIO GekkoFS

Using distributed storage

• With changes to applications
• Object store

• Needs same functionality as global filesystem
• Removes need for POSIX, or POSIX-like functionality

Intel DAOS and
BSC dataClay

Using distributed storage

• New usage models
• Resident data sets

• Sharing preloaded data across a range of jobs
• Data analytic workflows
• How to control access/authorisation/security/etc….?

• Workflows
• Producer-consumer model

• Remove filesystem from intermediate stages

Using distributed storage

• Workflows
• How to enable different sized applications?

• How to schedule these jobs fairly?
• How to enable secure access?

The challenge of distributed
storage

• Enabling all the use cases in multi-user, multi-job
environment is the real challenge

• Heterogeneous scheduling mix
• Different requirements on the SCM
• Scheduling across these resources
• Enabling sharing of nodes
• Not impacting on node compute performance
• etc….

• Enabling applications to do more I/O
• Large numbers of our applications don’t heavily use

I/O at the moment
• What can we enable if I/O is significantly cheaper

Potential solutions

• Large memory space

• Burst buffer

• Filesystem across NVRAM in nodes

• HSM functionality

• Object store across nodes

• Checkpointing and I/O libraries

Performance - workflows

Workflow phase Lustre B-APM

Decomposition 1841 1453

Data-staging 330

Solver 664 78

16 nodes1 node 1 node

• Ext4 filesystem on
each socket

• Standard file access
20 nodes

Performance – IO-500

• GekkoFS filesystem
• GekkoFS only using TCP/IP. Optimisations to be

done to utilise the Omnipath network
• Only using a single rail
• Only using a single sockets worth of memory

• Lots of optimisation scope

Performance – IO-500

• Ten nodes

• Twenty nodes
[RESULT] BW phase 1 ior_easy_write 45.689 GB/s : time 326.58 seconds
[RESULT] IOPS phase 1 mdtest_easy_write 398.313 kiops : time 348.71 seconds
[RESULT] BW phase 2 ior_hard_write 3.827 GB/s : time 310.10 seconds
[RESULT] IOPS phase 2 mdtest_hard_write 48.792 kiops : time 315.29 seconds
[RESULT] IOPS phase 3 find 2645.500 kiops : time 57.71 seconds
[RESULT] BW phase 3 ior_easy_read 48.452 GB/s : time 307.96 seconds
[RESULT] IOPS phase 4 mdtest_easy_stat 1040.100 kiops : time 133.82 seconds
[RESULT] BW phase 4 ior_hard_read 13.438 GB/s : time 88.32 seconds
[RESULT] IOPS phase 5 mdtest_hard_stat 1063.020 kiops : time 16.73 seconds
[RESULT] IOPS phase 6 mdtest_easy_delete 592.988 kiops : time 239.39 seconds
[RESULT] IOPS phase 7 mdtest_hard_read 239.824 kiops : time 66.02 seconds
[RESULT] IOPS phase 8 mdtest_hard_delete 41.083 kiops : time 374.58 seconds
[SCORE] Bandwidth 18.3687 GB/s : IOPS 367.42 kiops : TOTAL 82.1525

[RESULT] BW phase 1 ior_easy_write 22.566 GB/s : time 334.77 seconds
[RESULT] IOPS phase 1 mdtest_easy_write 293.677 kiops : time 365.91 seconds
[RESULT] BW phase 2 ior_hard_write 3.063 GB/s : time 309.71 seconds
[RESULT] IOPS phase 2 mdtest_hard_write 34.665 kiops : time 318.85 seconds
[RESULT] IOPS phase 3 find 1245.860 kiops : time 94.33 seconds
[RESULT] BW phase 3 ior_easy_read 21.625 GB/s : time 349.33 seconds
[RESULT] IOPS phase 4 mdtest_easy_stat 758.889 kiops : time 143.15 seconds
[RESULT] BW phase 4 ior_hard_read 9.804 GB/s : time 96.78 seconds
[RESULT] IOPS phase 5 mdtest_hard_stat 768.476 kiops : time 17.48 seconds
[RESULT] IOPS phase 6 mdtest_easy_delete 441.682 kiops : time 248.24 seconds
[RESULT] IOPS phase 7 mdtest_hard_read 159.821 kiops : time 71.86 seconds
[RESULT] IOPS phase 8 mdtest_hard_delete 37.775 kiops : time 293.52 seconds
[SCORE] Bandwidth 11.0028 GB/s : IOPS 258.151 kiops : TOTAL 53.2953

Performance - STREAM

Mode Min BW (GB/s) Median BW (GB/s) Max BW (GB/s)

App Direct (DRAM) 142 150 155

App Direct (DCPMM) 32 32 32

Memory mode 144 146 147

Memory mode 12 12 12

https://github.com/adrianjhpc/DistributedStream.git

STREAM_TYPE *a, *b, *c;
pmemaddr = pmem_map_file(path, array_length,

PMEM_FILE_CREATE|PMEM_FILE_EXCL,
0666, &mapped_len, &is_pmem)

a = pmemaddr;
b = pmemaddr + (*array_size+OFFSET)*BytesPerWord;
c = pmemaddr + (*array_size+OFFSET)*BytesPerWord*2;

#pragma omp parallel for
for (j=0; j<*array_size; j++){

a[j] = b[j]+scalar*c[j];
}
pmem_persist(a, *array_size*BytesPerWord);

Performance - STREAM

unsigned long get_processor_and_core(int *socket, int *core){

unsigned long a,d,c;

__asm__ volatile("rdtscp" : "=a" (a), "=d" (d), "=c" (c));

*socket = (c & 0xFFF000)>>12;

*core = c & 0xFFF;

return ((unsigned long)a) | (((unsigned long)d) << 32);;

}

strcpy(path,"/mnt/pmem_fsdax");

sprintf(path+strlen(path), "%d", socket/2);

sprintf(path+strlen(path), "/");

Summary

• B-APM is here
• In-node persistent storage likely to come to (maybe

some) HPC and HPDA systems shortly
• Applications can program directly but….
• …potentially systemware can handle functionality

for applications, at least in transition period

• Interesting times
• Convergence of HPC and HPDA (maybe)
• Different data usage/memory access models may

become more interesting
• Certainly benefits for single usage machines, i.e.

bioinformatics, weather and climate, etc…

• When used efficiently performance of Intel
DCPMM can be very significant

