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Warning!

• Terminology might be annoying:
• NVDIMM
• NVRAM
• PM (Persistent Memory)
• SCM (Storage Class Memory (people get upset about 

this term))
• B-APM (Byte-Addressable Persistent Memory (my 

favourite))

• My fault, but people will argue which is the most 
appropriate

• So using them all to annoy as many people as possible 




I/O Performance

• https://www.archer.ac.uk/documentation/white-papers/parallelIO-
benchmarking/ARCHER-Parallel-IO-1.0.pdf



I/O Performance – Small writes

• Plot of average (across processes) run times of 
individual I/O regions for visualisation I/O 

• Same code executed for all runs

• I/O varies significantly in some cases:

• Worst case 
~12x

• Best case 
~2x



I/O Performance – Large writes

• Plot of run times of individual I/O regions for checkpoint I/O 
• Same code executed for all runs

• I/O varies in a similar pattern to the visualisation I/O
• Variation more extreme (fastest is faster)
• Average more consistent

• Checkpoint 
I/O less 
frequent but 
much quicker

• Much 
higher data 
volumes 



I/O Performance



Application I/O patterns
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Operation
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Burst Buffer

• Non-volatile already becoming part of HPC hardware 
stack

• SSDs offer high I/O performance but at a cost
• How to utilise in large scale systems?

• Burst-buffer hardware accelerating parallel filesystem
• Cray DataWarp

• DDN IME (Infinite Memory Engine)



Burst buffer

high performance network

external filesystem

compute nodes

high performance network

external filesystem

compute nodes

burst 
filesystem



Future storage

All-flash scratch filesystem
• 30-petabyte Lustre 

filesystem
• 4 TB/sec

Perlmutter



Moving beyond burst buffer

• Storage is moving to the node rather than the 
filesystem

• Argonne Theta machine has 128GB SSD in each 
compute node

high performance network

external filesystem

compute nodes



Moving beyond burst buffer

• Aurora will feature next generation Intel 
DPCMM



Enabling new I/O
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New Memory Hierarchies 

• High bandwidth, on processor memory
• Large, high bandwidth cache
• Latency cost for individual access may be an 

issue

• Main memory
• DRAM
• Costly in terms of energy, potential for lower 

latencies than high bandwidth memory

• Byte-addressable Persistent Memory
• High capacity, ultra fast storage
• Low energy (when at rest) but still slower 

than DRAM
• Available through same memory controller 

as main memory, programs have access to 
memory address space
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Non-volatile memory

• Non-volatile RAM
• Intel DCPMM technology
• STT-RAM

• Much larger capacity than DRAM
• Hosted in the DRAM slots, controlled by a standard 

memory controller

• Slower than DRAM by a small factor, but 
significantly faster than SSDs

• STT-RAM
• Read fast and low energy
• Write slow and high energy

• Trade off between durability and performance
• Can sacrifice data persistence for faster writes



SRAM vs NVRAM

• SRAM used for cache

• High performance but costly
• Die area
• Energy leakage

• DRAM lower cost but lower performance
• Higher power/refresh requirement

• NVRAM technologies offer
• Much smaller implementation area
• No refresh/ no/low energy leakage
• Independent read/write cycles

• NVDIMM offers
• Persistency
• Direct access (DAX)



Memory levels

• Intel DCPMM has different memory modes* 
(like MCDRAM on KNL):

• Two-level memory (2LM) (Memory Mode)

• One-level memory (1LM) (App Direct Mode)
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*https://www.google.com/patents/US20150178204



Intel DCPMM

• The “memory” usage model allows for the 
extension of the main memory 

• The data is volatile like normal DRAM based main 
memory

• The “storage” usage model which supports the 
use of NVRAM like a classic block device

• E.g. like a very fast SSD

• The “application direct” (DAX) usage model 
maps persistent storage from the NVRAM 
directly into the main memory address space

• Direct CPU load/store instructions for persistent 
main memory regions



Programming DCPMM

• Block memory mode
• Standard filesystem api’s
• Will incur block mode overheads (not byte 

granularity, kernel interrupts, etc…)

• App Direct/DAX mode
• Volatile memory access can use standard 

load/store
• PMDK

• pmem.io
• Persistent 

load/store
• memory 

mapped file 
like 
functionality 



Exploiting distributed storage



NEXTGenIO

Project
• European Funded 

Research & Innovation 
Action

• 42 month duration

• €8.1 million

• Approx. 50% committed 
to hardware development

Partners
• EPCC

• INTEL

• FUJITSU

• BSC

• TUD

• ARM/ALLINEA

• ECMWF

• ARCTUR



NGIO

• Whole ecosystem development
• Support hardware and software, support users in 

porting and optimising application

• Hardware development
• Fujitsu motherboard and BIOS work
• Intel memory and processor hardware

• Software development
• Applications
• Scheduler
• Filesystems
• Data scheduler
• Profilers and debuggers



Systemware architecture



NGIO Prototype

• 34 node cluster with 
3TB of Intel 
DCPMM per node

• 2 CPUS per node, 
each with 1.5TB of 
DCPMM and 96GB 
of DRAM

• External Lustre 
filesystem



Using distributed storage
• Without changing applications

• Large memory space/in-memory database etc…
• Local filesystem

• Users manage data themselves
• No global data access/namespace, large number of files
• Still require global filesystem for persistence



Using distributed storage

• Without changing applications
• Filesystem buffer

• Pre-load data into NVRAM from filesystem
• Use NVRAM for I/O and write data back to filesystem at 

the end
• Requires systemware to preload and postmove data
• Uses filesystem as namespace manager

NGIO Data 
Scheduler 
(NORNS) and 
Slurm
integration



Using distributed storage

• Without changing applications
• Global filesystem

• Requires functionality to create and tear down global 
filesystems for individual jobs

• Requires filesystem that works across nodes
• Requires functionality to preload and postmove filesystems
• Need to be able to support multiple filesystems across 

system

NGIO GekkoFS



Using distributed storage

• With changes to applications
• Object store

• Needs same functionality as global filesystem
• Removes need for POSIX, or POSIX-like functionality

Intel DAOS and 
BSC dataClay



Using distributed storage

• New usage models
• Resident data sets

• Sharing preloaded data across a range of jobs
• Data analytic workflows
• How to control access/authorisation/security/etc….?

• Workflows
• Producer-consumer model

• Remove filesystem from intermediate stages



Using distributed storage

• Workflows
• How to enable different sized applications?

• How to schedule these jobs fairly?
• How to enable secure access?



The challenge of distributed 
storage

• Enabling all the use cases in  multi-user, multi-job 
environment is the real challenge

• Heterogeneous scheduling mix
• Different requirements on the SCM
• Scheduling across these resources
• Enabling sharing of nodes
• Not impacting on node compute performance
• etc….

• Enabling applications to do more I/O
• Large numbers of our applications don’t heavily use 

I/O at the moment
• What can we enable if I/O is significantly cheaper



Potential solutions

• Large memory space

• Burst buffer

• Filesystem across NVRAM in nodes

• HSM functionality

• Object store across nodes

• Checkpointing and I/O libraries



Performance - workflows

Workflow phase Lustre B-APM

Decomposition 1841 1453

Data-staging 330

Solver 664 78

16 nodes1 node 1 node

• Ext4 filesystem on 
each socket

• Standard file access
20 nodes



Performance – IO-500

• GekkoFS filesystem
• GekkoFS only using TCP/IP. Optimisations to be 

done to utilise the Omnipath network
• Only using a single rail
• Only using a single sockets worth of memory

• Lots of optimisation scope



Performance – IO-500

• Ten nodes

• Twenty nodes
[RESULT] BW   phase 1            ior_easy_write 45.689 GB/s : time 326.58 seconds
[RESULT] IOPS phase 1         mdtest_easy_write 398.313 kiops : time 348.71 seconds
[RESULT] BW   phase 2            ior_hard_write 3.827 GB/s : time 310.10 seconds
[RESULT] IOPS phase 2         mdtest_hard_write 48.792 kiops : time 315.29 seconds
[RESULT] IOPS phase 3                      find             2645.500 kiops : time  57.71 seconds
[RESULT] BW   phase 3             ior_easy_read 48.452 GB/s : time 307.96 seconds
[RESULT] IOPS phase 4          mdtest_easy_stat 1040.100 kiops : time 133.82 seconds
[RESULT] BW   phase 4             ior_hard_read 13.438 GB/s : time  88.32 seconds
[RESULT] IOPS phase 5          mdtest_hard_stat 1063.020 kiops : time  16.73 seconds
[RESULT] IOPS phase 6        mdtest_easy_delete 592.988 kiops : time 239.39 seconds
[RESULT] IOPS phase 7          mdtest_hard_read 239.824 kiops : time  66.02 seconds
[RESULT] IOPS phase 8        mdtest_hard_delete 41.083 kiops : time 374.58 seconds
[SCORE] Bandwidth 18.3687 GB/s : IOPS 367.42 kiops : TOTAL 82.1525

[RESULT] BW   phase 1            ior_easy_write 22.566 GB/s : time 334.77 seconds
[RESULT] IOPS phase 1         mdtest_easy_write 293.677 kiops : time 365.91 seconds
[RESULT] BW   phase 2            ior_hard_write 3.063 GB/s : time 309.71 seconds
[RESULT] IOPS phase 2         mdtest_hard_write 34.665 kiops : time 318.85 seconds
[RESULT] IOPS phase 3                      find             1245.860 kiops : time  94.33 seconds
[RESULT] BW   phase 3             ior_easy_read 21.625 GB/s : time 349.33 seconds
[RESULT] IOPS phase 4          mdtest_easy_stat 758.889 kiops : time 143.15 seconds
[RESULT] BW   phase 4             ior_hard_read 9.804 GB/s : time  96.78 seconds
[RESULT] IOPS phase 5          mdtest_hard_stat 768.476 kiops : time  17.48 seconds
[RESULT] IOPS phase 6        mdtest_easy_delete 441.682 kiops : time 248.24 seconds
[RESULT] IOPS phase 7          mdtest_hard_read 159.821 kiops : time  71.86 seconds
[RESULT] IOPS phase 8        mdtest_hard_delete 37.775 kiops : time 293.52 seconds
[SCORE] Bandwidth 11.0028 GB/s : IOPS 258.151 kiops : TOTAL 53.2953



Performance - STREAM

Mode Min BW (GB/s) Median BW (GB/s) Max BW (GB/s)

App Direct (DRAM) 142 150 155

App Direct (DCPMM) 32 32 32

Memory mode 144 146 147

Memory mode 12 12 12

https://github.com/adrianjhpc/DistributedStream.git

STREAM_TYPE     *a, *b, *c;
pmemaddr = pmem_map_file(path, array_length,

PMEM_FILE_CREATE|PMEM_FILE_EXCL,
0666, &mapped_len, &is_pmem)

a = pmemaddr;
b = pmemaddr + (*array_size+OFFSET)*BytesPerWord;
c = pmemaddr + (*array_size+OFFSET)*BytesPerWord*2;

#pragma omp parallel for
for (j=0; j<*array_size; j++){

a[j] = b[j]+scalar*c[j];
}
pmem_persist(a, *array_size*BytesPerWord);



Performance - STREAM

unsigned long get_processor_and_core(int *socket, int *core){

unsigned long a,d,c;

__asm__ volatile("rdtscp" : "=a" (a), "=d" (d), "=c" (c));

*socket = (c & 0xFFF000)>>12;

*core = c & 0xFFF;

return ((unsigned long)a) | (((unsigned long)d) << 32);;

}

strcpy(path,"/mnt/pmem_fsdax");

sprintf(path+strlen(path), "%d", socket/2);

sprintf(path+strlen(path), "/");



Summary

• B-APM is here
• In-node persistent storage likely to come to (maybe 

some) HPC and HPDA systems shortly
• Applications can program directly but….
• …potentially systemware can handle functionality 

for applications, at least in transition period

• Interesting times
• Convergence of HPC and HPDA (maybe)
• Different data usage/memory access models may 

become more interesting
• Certainly benefits for single usage machines, i.e. 

bioinformatics, weather and climate, etc…

• When used efficiently performance of Intel 
DCPMM can be very significant


