
Andreas Dilger
Principal Lustre Architect

CTO Whamcloud

Lustre: The Next 20 Years

2

A Long Time Ago, In A Company Far, Far Away...

Source: http://www.myshared.ru/slide/137795/

http://www.myshared.ru/slide/137795/

6/10/2001 1
C l u s t e r F i l e S y s t e m s , I n c

"All the hippies work for
IBM" - Joe Jackson

Someone Had A Modest Goal...

6/10/2001 1
C l u s t e r F i l e S y s t e m s , I n c

Lustre
The Inter-Galactic File System

Peter J. Braam
braam@clusterfs.com
http://www.clusterfs.com

Source: Lustre, The Inter-Galactic File System, Peter Braam, 2002

Someone Had A Modest Goal...

https://computing.llnl.gov/tutorials/bgl/talks/braam.pdf

5 sep-2004 Source: The Lustre Storage Architecture, Phil Schwan, 2004

Stelias Computing in Peter Braam's basement
Object-based storage project for Seagate
• Ethernet-connected HDDs with embedded Linux
• OBDfs developed from 1999/06 to 2000/03
• ext2 filesystem split in half with OBD API between
• Basic local-storage IO functionality demonstrated

Brief interlude at TurboLinux in Santa Fe, NM
CFS formed for ASCI Path Forward 2001/03
• One client+HDDs turned into distributed parallel fs
• US DOE required larger partners for project credibility

• Enter HP+Intel for program mgmt., testing, etc. 2002/08

First production use on MCR (#3) at LLNL
• First testing 2002/08, production 2002/11, 1.0 2003/12

Second install HPCS2 (#5) at PNNL in 2003/07
• Team lived & developed onsite for two weeks

And Brought It All Together...

Top500 Cluster

• 11.2 Tflops Linux cluster
• 4.6 TB of aggregate memory
• 138.2 TB of aggregate local disk space
• 1152 total nodes plus separate hot spare cluster and development cluster

• 4 GB of DDR SDRAM memory and 120 GB Disk Space per node
• 2,304 Intel 2.4 GHz Xeon processors
• Cluster File Systems, Inc. supplied the Lustre Open Source cluster wide file system

• 115TB capacity, 4.48GB/s peak I/O speed
• Cluster interconnect: QsNet ELAN3 by Quadrics,

A similar cluster with Myrinet connection announced for Los Alamos National Lab,
planned for 2006

MCR LINUX CLUSTER
LLNL, LIVERMORE, CA
LINUX NETWORX/QUADRICS
Rmax: 5.69 TFlops

Source: From the Earth Simulator to PC Clusters, Desy, SC'02

https://www-zeuthen.desy.de/technisches_seminar/texte/sc2002.pdf

7

Lustre Performance and Capacity Growth

Capacity ~1.38x per year

IO Perf ~1.36x per year

Source: Rock Hard Lustre, Nathan Rutman, Cray (with updates for recent years); Disk Drive Prices (1955-2019), John C. McCallum

120MB 200MB 320MB 640MB 2GB 3GB 4GB 6GB 12GB 16GB
200MB/s Quadrics Elan3 HDR IB 20GB/s

Network Speed: ~1.32x per yearHDD Capacity: ~1.32x per year

http://cdn.opensfs.org/wp-content/uploads/2011/11/Rock-Hard1.pdf
http://www.jcmit.net/diskprice.htm

whamcloud.com8

You may ask yourself, "Well, how did I get here?"*

► Good timing and some luck - there was a gap in storage at scale, Linux was new
► Innovative ideas providing strong architectural foundation

• Robust protocol compatibility allows incremental and distributed feature development
• Leverage existing disk filesystems/tools (ext4/e2fsprogs, later ZFS)

► Strong development team - great people, regardless of location
► Balance between funded NRE and production usage

• Can't live in your own bubble too long, need to work with users
► GPL license helped contribution and avoided strangulation

• We wouldn't be here without GPL keeping the code free
• Major benefit from external contributors to Lustre, ext4, ZFS, Linux

► Hard work: bugzilla tickets: 24700, JIRA issues: 12460+
• Total files: 1861, Total lines of code: 1021026
• Total LOC changed: 8049464, Commits: 19401, Authors: 351, Orgs: 42+

* With apologies to David Byrne and the Talking Heads

https://bugzilla.lustre.org/
https://jira.whamcloud.com/

whamcloud.com9

Where Are We Going From Here?

►New feature development and maintenance releases ongoing
• Good base of features to build on, mature development and testing process
• Feature release every ~7 months, new LTS every ~2 months or as needed

►Growing group of solid developers beyond those at Whamcloud
• AWS, CEA, Cray, HPE, ORNL, SuSE, others contributed 25% of changes for 2.13.0

►Annual Lustre User Groups (USA, Paris, Tokyo, Beijing), BOFs (SC, ISC)
►Strong interest and usage from commercial cloud (AWS, GCP, Azure)
►Great showing in IO-500 this year

#1 system @ Cambridge (3.9x speedup on same hardware over 2018-11 list)
►Continue to improve functionality/scalability as workloads/systems require

Source: IO-500 List 2019-06, Virtual Institute for I/O

https://www.vi4io.org/io500/start

whamcloud.com10

Local
Datasets

Local
NMVe/NVRAM

Tiered Storage and File Level Redundancy
Data locality, with direct access from clients to all storage tiers as needed

Metadata
Servers
(~100’s)

Object Storage
Servers

(~1000’s)

Metadata
Targets
(MDTs)

Management
Target (MGT) HDD Object Storage Targets (OSTs)

Lustre Clients (~100,000+)NVMe MDTs
on client net

Archive OSTs
(Erasure Coded)

Policy Engine,
Data Transfer Nodes

NVMe OSTs (Burst Buffer)
on client network

Transparent Tiering to
Multiple Clouds

WAN ARCHIVE

Local data
processing

Bi-directional
(remote) sync

Transparent
migration

whamcloud.com11

Persistent Client Cache (PCC) (LU-10092 2.13+)

► Reduce latency, improve small/unaligned IOPS, reduce network traffic
► PCC integrates Lustre namespace with client local cache devices (e.g. ext4 on NVMe)

• Files pulled into PCC by HSM copytool per user directive, job script, policy
• Only file data is local to client, global namespace is provided by Lustre

► Kernel uses PCC file, if present, or normal Lustre IO
• Further file read/write access directly to local data
• No data/IOPS/attributes to servers while file in PCC
• Data migrated out of PCC via HSM on remote use/flush

► Separate shared read vs. exclusive write cache
► Future integration with DAX for NVRAM storage

OST OST OST

NVMe

CT1

OSCs

llite PCC Switcher

Cache I/ONormal
I/O

Fetch
NVMe

CT2

OSCs

llite PCC Switcher

Cache I/ONormal
I/O

Fetch

https://jira.whamcloud.com/browse/LU-10092

whamcloud.com12

FLR Erasure Coded Files (LU-10911 2.14)

► Erasure coding adds redundancy without 2x/3x mirror overhead
► Add erasure coding to new/old striped files after write done

• Use delayed/immediate mirroring for files being actively modified
• Leverage CPU-optimized EC code (Intel ISA-L) for best performance

► For striped files - add N parity per M data stripes (e.g. 16d+3p)
• Fixed RAID-4 parity layout per file, but declustered across files
• Parity declustering avoids IO bottlenecks, CPU overhead of too many parities
o e.g. split 128-stripe file into 8x (16 data + 3 parity) with 24 parity stripes

dat0 dat1 ... dat15 par0 par1 par2 dat16 dat17 ... dat31 par3 par4 par5 ...

0MB 1MB ... 15M p0.0 q0.0 r0.0 16M 17M ... 31M p1.0 q1.0 r1.0 ...

128 129 ... 143 p0.1 q0.1 r0.1 144 145 ... 159 p1.1 q1.1 r1.1 ...

256 257 ... 271 p0.2 q0.2 r0.2 272 273 ... 287 p1.2 q1.2 r1.2 ...

https://jira.whamcloud.com/browse/LU-10911
https://software.intel.com/en-us/storage/ISA-L

whamcloud.com13

Client-side encryption (LU-12275 2.15)
► End-to-end data protection

• Data encrypted on wire and at rest

► Servers do not have keys, only users
► Per-user keys means data safety

• Per-file derived key means safe deletion

► Based on fscrypt from Google/ext4
• Don't invent own encryption!

► Accelerated encoding
• AES CPU/QAT offload

Client-side compression (LU-10026 2.16)
► Reduce data transfer to network/disk

• Can read/write faster than network

► Data chunking to allow random IO
► Accelerated compression on client

• Multiple cores or hardware offload

Client-side data processing

Source: Enhanced Adaptive Compression in Lustre, Anna Fuchs, LAD'16

https://jira.whamcloud.com/browse/LU-12275
https://jira.whamcloud.com/browse/LU-10026
https://www.eofs.eu/_media/events/devsummit16/anna_fuchs_lad16_lds_compression.pdf

whamcloud.com14

► WBC create/modify files in RAM/local NVMe without MDS RPCs
• Exclusively lock new parent directory at mkdir time
o No filenames in new dir or readdir() existing entries

• Client can create new files and subdirectories therein with no MDS RPCs
• Cache new files/directories only in RAM/local NVMe until cache flush
• Flush files immediately to MDS due to other client access/lock conflict
o Push top-level entries to MDS, lock new subdirs, repeat as needed

• Flush rest of tree in background to MDS/OSS by age or memory pressure

► Changes globally visible on MDS flush to, normal access thereafter
► Add aggregate operations to MDS to improve performance

• Batch operations on network to reduce RPCs, on disk to reduce IOPS

► Basic WBC prototype developed to test concept
• No cache/quota/space limits, no background flushing, no batching, ...
• Early tests show 10-20x single-client speedup tests (untar, make, …)

Client Metadata Writeback Cache (WBC) (LU-10983)

Client

MDS

Client

OSS

Files &
Dirs

B
U
L
K

B
U

L
K

Files &
Dirs

https://jira.whamcloud.com/browse/LU-10983

whamcloud.com15

Client Container Image (CCI)

► Filesystem images are used ad-hoc with Lustre today
• Read-only cache of many small files manually mounted on clients
• Root filesystem images for diskless clients/VMs

► CCI is ldiskfs/zfs image file loopback mounted on client
• Whole directory tree (maybe millions of files) stored in one CCI file
• Best for self-contained workloads (AI, Genomics, ensemble runs)

► CCI integrates container image handling with Lustre
• Image is registered to Lustre directory for control future access
• Transparently mounts registered image at client on directory access
• Image data blocks read on demand from OST(s) and/or client cache

► Leverage foreign layout support added for DAOS namespace
• CCI can bind image junction type into namespace

Client
CCI

Files &
Dirs

OSS

CCI

Client

CCI

CCI

Files &
Dirs

B U L K

DONE
TODO

B
U

L K

whamcloud.com16

Network limit

► 4.15 CCI improvement due to Ubuntu 4.15 kernel loopback driver
► Early testing of CCI prototype shows promise

Single Client 32KB File Create Performance (MDS vs. CCI)

64
G

B
RA

M
 F

ul
l

whamcloud.com17

DNE Metadata Redundancy

► New directory layout hash for mirrored directories, mirrored MDT inodes
• Each dirent copy holds multiple MDT FIDs for inodes
• Store dirent copy on each mirror directory shard
• Name lookup on any MDT can access via any FID
• Copies of mirrored inodes stored on different MDTs

► DNE2 distributed transaction update recovery
• Ensure that copies stay in sync on multiple MDTs

► Redundancy policy per-filesystem/subtree is flexible
► Flexible MDT space/load balancing with striped dirs
► Early design work started, discussions ongoing

MDT0005MDT0002

Parent
Dir

Sub
Dir

Inode

FID 2:1
LOV layout

Inode

FID 5:2
LOV layout

home FID2:
A

FID
5:B

foo FID
2:1

FID
5:2

Dir
2:A foo FID

2:1
FID
5:2

Dir
5:B

home FID2:
A

FID
5:B

whamcloud.com18

Leverage New Storage & Networking Technologies

► PCC will be able to expose in-client NVRAM directly to applications via DAX
• NVRAM over the network is much less useful than on client

► NVRAM-local MDT OSD when economically viable at scale
• NOVA is an example of local Linux NVRAM filesystem, may be suitable for MDT
• Lower overhead from byte-granular storage updates, faster storage

► Track I/O through entire application lifecycle
• Label I/O from application to server, in storage, account IOPS like CPU cycles

► Users will know even less about how their applications perform I/O
• Concentrate knowledge and experience in application libraries

► Closer integration/interfaces between applications, libraries, and storage
• Always-on I/O tracking of prior application runs automatically tunes later runs
• POSIX will continue to be important, with (ad-hoc) extensions/bypass/layers

whamcloud.com19

What do things look like further into the future?

► No crystal ball is available, but there is always time before it arrives
• A single OSS is now faster and larger than an entire Top-10 filesystem from 2002
• PB-sized all-flash storage with millions of IOPS and TB/s wasn't conceivable in 1999
• Lustre can run this today and continues to improve across workloads

► Storage will continue to improve in multiple dimensions
• Leveraging those improvements does not happen by itself
• Consider interactive performance of user interfaces vs. CPU speedup...

► Software R&D must continue to find new ways to leverage new hardware
• Several year effort to interface Linux kernel (DAX) with persistent memory

20 - NSC 2003

Lustre Feature Roadmap
Lustre (Lite) 1.0
(Linux 2.4 & 2.6)

Lustre 2.0
(Linux 2.6)

Lustre 3.0

2003 2004 2005

Failover MDS Metadata cluster Metadata cluster
Basic Unix security Basic Unix security Advanced Security
File I/O very fast
(~100’s OST’s)

Collaborative read cache Storage management

Intent based scalable
metadata

Write back metadata Load balanced MD

POSIX compliant Parallel I/O Global namespace

Source: The Lustre Storage Architecture, Peter Braam, 2003

https://computing.llnl.gov/tutorials/bgl/talks/braam.pdf

whamcloud.com22

Performance Improvements for Flash (WC 2.12+)

►Reduce server CPU overhead to improve small flash IOPS (LU-11164)
• Performance is primarily CPU-limited for small read/write
• Any reduction in CPU usage directly translates to improved IOPS

►Avoid page cache on ldiskfs flash OSS (LU-11347)
• Avoids CPU overhead/lock contention for page eviction
• Streaming flash performance is often network limited

►TRIM of backend flash storage (LU-11355)
• Access backend filesystem fstrim functionality

►Improve performance of small, unaligned writes
►Improved efficiency of ZFS IO pipeline

• Integrate with ABD in ZFS 0.8 to avoid memcpy() of data

DONE
TODO

https://jira.whamcloud.com/browse/LU-11164
https://jira.whamcloud.com/browse/LU-11347
https://jira.whamcloud.com/browse/LU-11355

whamcloud.com23

91,100

1024

2048

4096

8192

16384

32768

65536

131072

262144

524288

1 2 4 8 16 32 48 64 80 96 112 128

IO
PS

 (o
ps

/s
ec

, l
og

 sc
al

e)

Number of Process

Single Client IOPS (1 x ES200NV, random read)

4KB
32K
128K

Single Client IOPS and Bandwidth (1 client, 1x ES200NV)

7,347

16

32

64

128

256

512

1,024

2,048

4,096

8,192

16,384

1 2 4 8 16 32 48 64 80 96 112 128

Ba
nd

w
id

th
 (M

B/
se

c,
 lo

g
sc

al
e)

Number of Process

Single Client Bandwidth (1 x ES200NV, random read)

4KB
32K
128K

whamcloud.com24

11,597

16

32

64

128

256

512

1,024

2,048

4,096

8,192

16,384

1 2 4 8 16 32 48 64 80 96 112 128

Ba
nd

w
id

th
 (M

B/
se

c,
 lo

g
sc

al
e)

Number of Processes

Single Client Bandwidth (4 x ES200NV, random read)

4KB
32K
128K

333,000

276,000

1,024

2,048

4,096

8,192

16,384

32,768

65,536

131,072

262,144

524,288

1 2 4 8 16 32 48 64 80 96 112 128

IO
PS

 (o
ps

/s
ec

, l
og

 sc
al

e)

Number of Processes

Single Client IOPS (4 x ES200NV, random read)

4KB

32K

128K

Single Client IOPS and Bandwidth (1 client, 4x ES200NV)

whamcloud.com25

File Level Redundancy (FLR) Enhancements (WC 2.12+)

► Allow Lustre-level mirroring for files, can be configured arbitrarily per file/directory
► FLR-aware OST object allocator to avoid replicas on same OST/OSS (LU-9007)
► Improve "lfs mirror resync" performance (LU-10916)

• Optimize multi-mirror resync (read data once, write multiple mirrors)
► "lfs mirror read" to dump specific mirror/version of file (LU-11245)
► "lfs mirror write" for script-based resync (LU-10258)
► Mirror NOSYNC flag + timestamp to allow file version/snapshot (LU-11400)
► Improved replica selection at runtime (LU-10158)

• Select best write replica (PREFERRED, SSD vs. HDD , near to client), read (many mirror vs. few)
• Allow specifying fault domains for OSTs (e.g. rack, PSU, network switch, etc.)

► Mount client directly on OSS for improved resync performance (LU-10191)
► Support DoM components (LU-10112)
► OST/MDT quotas (LU-11023, Cray)

• Track/restrict space usage on flash OSTs/MDTs

Replica 0 Object j (PRIMARY, PREFERRED)

Replica 1 Object k (STALE) delayed resync

DONE
TODO

https://jira.whamcloud.com/browse/LU-9007
https://jira.whamcloud.com/browse/LU-10916
https://jira.whamcloud.com/browse/LU-11245
https://jira.whamcloud.com/browse/LU-10258
https://jira.whamcloud.com/browse/LU-11400
https://jira.whamcloud.com/browse/LU-10158
https://jira.whamcloud.com/browse/LU-10191
https://jira.whamcloud.com/browse/LU-10112
https://jira.whamcloud.com/browse/LU-11023

whamcloud.com26

Tiered Storage with FLR Layouts (2.12/2.13)

► Integration with job scheduler and workflow for file prestage/drain/archive
► Policy engine to manage migration between tiers, rebuild replicas, ChangeLogs

• Policies for pathname, user, extension, age, OST pool, mirror copies, ...
• FLR provides mechanism for safe migration of file data
• RobinHood or Stratagem are good options for this

► Needs userspace integration and Lustre hooks
• Integrated burst buffers a natural starting point
• Mirror to flash, mark PREFERRED for read/write
• Resync modified files off flash, release space

► Quota on flash OST/MDT (LU-11023 Cray)
• Limit users from consuming all fast storage

► Integrate HSM into composite layout
• Allow multiple archives per file (tape, S3)
• Allow partial file restore from archive

Metadata
Servers
(~100’s)

Object
Storage
Servers
(1000s)

Metadata
Targets
(MDTs)

Management
Target
(MGT)

Object Storage Targets (OSTs)
(Warm Tier SAS/SSD)

Lustre Clients (~50,000+)NVM e M DTs
on client
network

Archive OSTs/Tape
(Cold Tier Erasure Code)

Policy
Engine

NVMe Burst Buffer/Hot Tier OSTs
on client network

DONE
TODO

https://jira.whamcloud.com/browse/LU-11023

whamcloud.com27

CCI Performance Gains

► Low I/O overhead, few file lock(s), high IOPS per client
• Readahead and write merging for data and metadata
• Client-local in-RAM filesystem operations with very low latency

► Access, migrate, replicate image with large bulk OSS RPCs
• Thousands of files aggregated with MB-sized network transfers
• Leverage existing high throughput OSS bulk transfer rates
• 1GB/s OSS read/write is about 30,000 32KB files/sec

► Unregister+delete CCI to remove all its files with few RPCs
• Simplifies user data management, accounting, job cleanup
• Avoid MDS overhead when dealing with groups of related files

Client
CCI

Files &
Dirs

OSS

CCI

Client

CCI

CCI

Files &
Dirs

B
U
L
K

B
U

L
K

whamcloud.com28

CCI Access Models

► Need to integrate image handling on Lustre client/MDS
• Integrate CCI creation with job workflow is easiest
• CCI layout type on parent directory creates CCI upon mkdir
• Enhance ldiskfs online resize to manage image size

► Client exclusively mounts CCI(s) and modifies locally
• For initial image creation/import from directory tree
• For workloads that run independently per directory

► Multiple clients read-only mount single image
• Shared input datasets (e.g. gene sequence, AI training)

► MDS exports shared read-write image to many clients
• Internal mount at MDS attaches image to namespace
• Use Data-on-MDT to transparently export image tree to clients

► Process whole tree of small files for HSM/tiering
• Efficiently migrate tree to/from flash tier, to/from archive

Client
CCI-RO

Files &
Dirs

OSS

CCI

Client
CCI-RO

Files &
Dirs

CCI

MDS

Client

File

Client

File

CCI-SHARED

B
U

L
K

B
U

LK

BULK

Files
& Dirs

whamcloud.com29

Metadata Writeback Cache

• Keep normal namespace
• Transparent to users
• Very low latency metadata operations
• Faster single client
• Network batch RPCs improves other ops
• Lower total overhead due to fewer layers

Client Container Image

• Segregated directory subtree
• Needs input from user/job
• Not for all usage patterns
• Faster total performance
• Network bulk IO reduces MDS workload
• File aggregation simplifies dataset

management (e.g. fast unlink)
• Metadata tiering/HSM

Comparison and Summary of WBC vs. CCI

• Significant improvements for evolving HPC workloads
• Leverages substantial functionality that already exists

