

Research Group German Climate Computing Center

ISC 2019 - IODC Workshop 20th June 2019

Eugen Betke, Julian Kunkel

2 Job Footprinting

3 Experiments

4 Evaluation

DKRZ's Mistral Supercomputer

2 Job Footprinting

3 Experiments

4 Evaluation

5 Summary

Goals

Motivation

Understanding the workload of the Mistral Supercomputer.

Goals

- Monitoring system development
 - > A flexible and extensible monitoring system
 - > A portable solution for the next HPC generation
- Establishing analysis workflows
 - Identification of problematic applications and key workloads
 - Understanding of typical I/O patterns

Tooling

> Automatic identification of inefficient applications (long term goal)

DKRZ Supercomputer and Monitoring

Captured Metrics

V	letad	ata	metrics	from	<pre>/proc/fs/lustre/llite/lustre*-*/stats</pre>
---	-------	-----	---------	------	--

1	md_read	getattr + getxattr + readdir + statfs + listxattr + open + close
2	md_mod	$setattr + set \times attr + mkdir + link + rename + symlink + rmdir$
3	md_file_create	create
4	md_file_delete	unlink
5	md_other	truncate + mmap + ioctl + fsync + mknod

I/O metrics from /proc/fs/lustre/llite/lustre*-*/read_ahead_stats

6 re 7 re 8 wi 9 wi	ead_bytes ead_calls rite_bytes rite_calls	Application I/O requests to Lustre.
10 os 11 os 12 os 13 os	sc_read_bytes sc_read_calls sc_write_bytes sc_write_calls	Lustre object storage client requests to object storage.

Analysis Workflow

- A daemon process iterates over all jobs
- Each job is fetched and analysed
 - Elasticsearch provides metadata
 - OpenTSDB provides I/O time series

Output

- ▶ I/O data is stored in separate JSON files
- Job statistics
- Sequence of I/O behaviour
- The tool is in an early development stage

Aggregated Data in JSON format: a Sample

Metadata

```
"metadata": {
 " source": {
   "@start": "2018-12-04T11:31:57",
   "@end": "2018-12-04T11:32:23",
   "elapsed": 26.
   "cpu hours": 0.057778.
   "total_nodes": 1.
   "nodes": " m11515 ".
   "ntasks per node": 8.
   "ntasks": 8.
   "total_cpus": 8.
   "cpus_per_task": 1,
   "jobname": "mkmpost",
   "jobid": 14407.
   "state": "COMPLETED".
    "user_id": 237,
   "group_id": 210.
   "username": "m3".
   "groupname": "mpis".
   "account": "ba09".
 }}}
```

Time Series

```
"ts": {
"read bytes": [
    "metric": "host.lustre.stats.read.bytes",
    "dps": {
      "1515756295": 5104980744214.
      "1515756305": 5104980753366.
      "1515756310": 5104980867566.
      "1515756290": 5104980741946.
      "1515756300": 5104980753366
    }.
    "aggregateTags": [],
    "tags": {
      "name": "lustre01".
      "system": "mistral".
      "host": "m10753"
  }
```

2 Job Footprinting

3 Experiments

4 Evaluation

5 Summary

Footprint Representation

Mapping of captured job data to a fixed length vector

Each element represents weighted I/O behaviour

Goal

$footprint(jobid) = \vec{v}_{jobid}$

with \vec{v} is a fixed length numeric vector

(1)

Footprint Representation

- Mapping of captured job data to a fixed length vector
- Each element represents weighted I/O behaviour

Example

$$footprint(14400233) = \begin{pmatrix} X1:3\\X2:1\\X3:3\\X4:1 \end{pmatrix}$$

$$I/O Behavior$$

$$X1: Metadata intensive$$

$$(1) X2: Using I/O node$$

$$X3: Highly parallel I/O$$

$$X4: No I/O$$

Segmentation

Problem

- Number of nodes is variable
- Segment size to large / too many segments

Solution

- 1 Split data in 2D segments
- **2** Convert to $n \times n$ matrix
 - for each segment and
 - for each metric

Computing statistics (constant size)

Job Footprinting

Fixed Length Statistic Matrix

Conversion of a 3x4 segment to a statistic matrix

Job Footprinting

Statistic Matrix

Statistics are organized as a 2D-matrix
 stats (v) is applied to both axis

 x-axis combines runtime
 y-axis combines nodes

 The computation is done

 for each segment
 for each of 13 metrics

 Similar matrices represent a kind of I/O behavior

12 stats on x-axis * 12 stats on y-axis * 13 metrics = 1872 floating-point values

Footprint Example

Sequence of I/O behavior

Absolute and normalized footprints summarize I/O behavior.

footprint(14496682) = [3, 44, 6, 5, 2, 5, 4, 0]
footprint_norm(14496682) = [0.04, 0.64, 0.09, 0.07, 0.03, 0.07, 0.06,

2 Job Footprinting

3 Experiments

4 Evaluation

5 Summary

Test Dataset Statistics

Data from 5 days

from 2018-12-07 to 2018-12-13

70846 jobs statistics downloaded in JSON format

- uncompressed size is 360GB
- **33,000 (47%) jobs are evaluated**, that
 - contain non-empty time series and
 - and have exit status COMPLETED

Exit status statistics

JOBS	EXIT STATUS
1,026	CANCELLED
63,636	COMPLETED
5,753	FAILED
3	NODE_FAIL
426	TIMEOUT

Slurm statistics

JOBS	SLURM PARTITION	
37,989	compute,compute2	
241	gpu	
828	miklip	
34	minerva	
31,752	shared, prepost	

Training Parameters

Data from 33,000 jobs are converted to 128,000 segments

- Each segment is 10 minutes long
- Segments/jobs that are shorter are omitted
- Algorithm: kMeans
 - Input: segments (segment size is 1,872)
 - 50,000 samples are used for training
 - Other samples are labeled with the trained model
 - ▶ Output: 8 clusters

Experiments

I/O Classes

Visualization of 10 samples of each class

Footprinting Parallel I/O

Footprint Clustering Parameters

- Footprints for each of 33,000 jobs are created
- Footprints are normalized, to make them independent to job runtime
- Algorithm: kMeans
 - Input: Footprints
 - Output: 8 clusters

Experiments

Footprint Categories and Distribution

Class	Percent	# Jobs	
FP0	0.34	71	
FP1	77.29	16003	
FP2	1.96	406	
FP3	0.78	162	
FP4	12.59	2606	
FP5	0.78	161	
FP6	4.19	868	
FP7	2.06	427	

- **2** Job Footprinting
- **3** Experiments
- **4** Evaluation

Score vs. Footprints

Red line represents the 0.998-quantile

Metric scores

- ▶ 0: Normal I/O activity
- ▶ 1: High I/O activity
- ▶ 2: Critical I/O activity

Job score = $\frac{Sum of all metric scores}{Job runtime}$

■ 53 jobs show critical average I/O activity

- Determined by the 0.998-quantile
- In histogram right to the red line

Intersection of score with footprinting

Foot	tprint	Match		
Class	Count	Count	in %	
FP0	71	0	0	
FP1	16003	12	22.64	
FP2	406	0	0	
FP3	162	0	0	
FP4	2606	24	45.28	
FP5	161	2	3.77	
FP6	868	7	13.21	
FP7	427	8	15 09	

Footprinting Parallel I/O

- **2** Job Footprinting
- **3** Experiments
- 4 Evaluation

5 Summary

Summary

DKRZ monitoring system

- ▶ **Open source** components + self-developed collector
 - Portable to the next HPC and other machines

Job-Footprinting

- Fine-grained **Categorization** of jobs
- Insight look in the job
- Good evaluation approach required