
Research Group
German Climate Computing Center

Footprinting Parallel I/O
Machine Learning to Classify Application’s I/O Behavior

ISC 2019 - IODC Workshop
20th June 2019

Eugen Betke, Julian Kunkel



Table Of Contents

1 DKRZ Monitoring

2 Job Footprinting

3 Experiments

4 Evaluation

5 Summary
DKRZ’s Mistral Supercomputer



1 DKRZ Monitoring

2 Job Footprinting

3 Experiments

4 Evaluation

5 Summary



DKRZ Monitoring

Goals

Motivation

� Understanding the workload of the Mistral Supercomputer.

Goals

� Monitoring system development

I A flexible and extensible monitoring system
I A portable solution for the next HPC generation

� Establishing analysis workflows

I Identification of problematic applications and key workloads
I Understanding of typical I/O patterns

� Tooling

I Automatic identification of inefficient applications (long term goal)

Footprinting Parallel I/O Eugen Betke, Julian Kunkel 4/24



DKRZ Monitoring

DKRZ Supercomputer and Monitoring

� The Mistral Supercomputer

I 3,340 client nodes
I 24 login nodes
I 2 Lustre file systems
I Slurm workload manager

� Monitoring System is built of

I open source components
I a self-developed data collector

� Provides statistics about

I login nodes
I user jobs
I workload manager queue

Footprinting Parallel I/O Eugen Betke, Julian Kunkel 5/24



DKRZ Monitoring

Captured Metrics

Metadata metrics from /proc/fs/lustre/llite/lustre*-*/stats

1 md_read getattr + getxattr + readdir + statfs + listxattr + open + close
2 md_mod setattr + setxattr + mkdir + link + rename + symlink + rmdir
3 md_file_create create
4 md_file_delete unlink
5 md_other truncate + mmap + ioctl + fsync + mknod

I/O metrics from /proc/fs/lustre/llite/lustre*-*/read_ahead_stats

6 read_bytes

Application I/O requests to Lustre.
7 read_calls

8 write_bytes

9 write_calls

10 osc_read_bytes

Lustre object storage client requests to object storage.
11 osc_read_calls

12 osc_write_bytes

13 osc_write_calls

Footprinting Parallel I/O Eugen Betke, Julian Kunkel 6/24



DKRZ Monitoring

Analysis Workflow

� A daemon process iterates over all jobs

� Each job is fetched and analysed

I Elasticsearch provides metadata
I OpenTSDB provides I/O time series

� Output

I I/O data is stored in separate JSON files
I Job statistics
I Sequence of I/O behaviour

� The tool is in an early development stage

Footprinting Parallel I/O Eugen Betke, Julian Kunkel 7/24



DKRZ Monitoring

Aggregated Data in JSON format: a Sample

Metadata

{

"metadata": {

"_source": {

"@start": "2018-12-04T11:31:57",

"@end": "2018-12-04T11:32:23",

"elapsed": 26,

"cpu_hours": 0.057778,

"total_nodes": 1,

"nodes": " m11515 ",

"ntasks_per_node": 8,

"ntasks": 8,

"total_cpus": 8,

"cpus_per_task": 1,

"jobname": "mkmpost",

"jobid": 14407,

"state": "COMPLETED",

"user_id": 237,

"group_id": 210,

"username": "m3",

"groupname": "mpis",

"account": "ba09",

}}}

Time Series

"ts": {

"read_bytes": [

{

"metric": "host.lustre.stats.read.bytes",

"dps": {

"1515756295": 5104980744214,

"1515756305": 5104980753366,

"1515756310": 5104980867566,

"1515756290": 5104980741946,

"1515756300": 5104980753366

},

"aggregateTags": [],

"tags": {

"name": "lustre01",

"system": "mistral",

"host": "m10753"

}

}

]

}

Footprinting Parallel I/O Eugen Betke, Julian Kunkel 8/24



1 DKRZ Monitoring

2 Job Footprinting

3 Experiments

4 Evaluation

5 Summary



Job Footprinting

Footprint Representation

� Mapping of captured job data to a fixed length vector

� Each element represents weighted I/O behaviour

Goal

footprint(jobid) = ~vjobid

with ~v is a fixed length numeric vector
(1)

Footprinting Parallel I/O Eugen Betke, Julian Kunkel 10/24



Job Footprinting

Footprint Representation

� Mapping of captured job data to a fixed length vector

� Each element represents weighted I/O behaviour

Example

footprint(14400233) =


X1 : 3
X2 : 1
X3 : 3
X4 : 1

 (1)

I/O Behavior
X1: Metadata intensive
X2: Using I/O node
X3: Highly parallel I/O
X4: No I/O

Footprinting Parallel I/O Eugen Betke, Julian Kunkel 11/24



Job Footprinting

Segmentation

� Problem

I Number of nodes is variable
I Segment size to large / too

many segments

� Solution

1 Split data in 2D segments
2 Convert to n × n matrix

for each segment and
for each metric

Footprinting Parallel I/O Eugen Betke, Julian Kunkel 12/24



Job Footprinting

Fixed Length Statistic Matrix

stats
(
~v
)

=



min
max

mean
q01
q10
q05
q25
q50
q75
q90
q95
q99



(2)

Conversion of a 3x4 segment to a statistic matrix

Footprinting Parallel I/O Eugen Betke, Julian Kunkel 13/24



Job Footprinting

Statistic Matrix

� Statistics are organized as a 2D-matrix

� stats
(
~v
)

is applied to both axis

I x-axis combines runtime
I y-axis combines nodes

� The computation is done

I for each segment
I for each of 13 metrics

� Similar matrices represent a kind of I/O
behavior

Resulting segment size after conversion

12 stats on x-axis * 12 stats on y-axis * 13 metrics = 1872 floating-point values

Footprinting Parallel I/O Eugen Betke, Julian Kunkel 14/24



Job Footprinting

Footprint Example

Sequence of I/O behavior

sequence(14496682) =

[2 3 3 2 2 3 2 2 3 1 3 2 1 4 4 1 0 0 0 1 1 1 1 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 6 1 1 1 1 1 6 1 1 1 1 1 6 6 1 1 1 1 1 1 1 1]

Absolute and normalized footprints summarize I/O behavior.

footprint(14496682) = [3, 44, 6, 5, 2, 5, 4, 0]

footprint_norm(14496682) = [0.04, 0.64, 0.09, 0.07, 0.03, 0.07, 0.06, 0.0]

Footprinting Parallel I/O Eugen Betke, Julian Kunkel 15/24



1 DKRZ Monitoring

2 Job Footprinting

3 Experiments

4 Evaluation

5 Summary



Experiments

Test Dataset Statistics

� Data from 5 days

I from 2018-12-07 to 2018-12-13

� 70846 jobs statistics downloaded in JSON format

I uncompressed size is 360GB

� 33,000 (47%) jobs are evaluated, that

I contain non-empty time series and
I and have exit status COMPLETED

Exit status statistics

JOBS EXIT STATUS
1,026 CANCELLED

63,636 COMPLETED
5,753 FAILED

3 NODE FAIL
426 TIMEOUT

Slurm statistics

JOBS SLURM PARTITION
37,989 compute,compute2

241 gpu
828 miklip
34 minerva

31,752 shared,prepost

Footprinting Parallel I/O Eugen Betke, Julian Kunkel 17/24



Experiments

Training Parameters

� Data from 33,000 jobs are converted to 128,000 segments

I Each segment is 10 minutes long
I Segments/jobs that are shorter are omitted

� Algorithm: kMeans
I Input: segments (segment size is 1,872)

50,000 samples are used for training
Other samples are labeled with the trained model

I Output: 8 clusters

Footprinting Parallel I/O Eugen Betke, Julian Kunkel 18/24



Experiments

I/O Classes

Visualization of 10 samples of each class

I/O Class Percent Count
IO0 1.12 1436
IO1 91.23 117176
IO2 0.01 13
IO3 0.36 459
IO4 0.43 548
IO5 6.83 8767
IO6 0.02 21
IO7 0.02 21

Footprinting Parallel I/O Eugen Betke, Julian Kunkel 19/24



Experiments

Footprint Clustering Parameters

� Footprints for each of 33,000 jobs are created

� Footprints are normalized, to make them independent to job runtime

� Algorithm: kMeans

I Input: Footprints
I Output: 8 clusters

Footprinting Parallel I/O Eugen Betke, Julian Kunkel 20/24



Experiments

Footprint Categories and Distribution

Class Percent # Jobs
FP0 0.34 71
FP1 77.29 16003
FP2 1.96 406
FP3 0.78 162
FP4 12.59 2606
FP5 0.78 161
FP6 4.19 868
FP7 2.06 427

Footprinting Parallel I/O Eugen Betke, Julian Kunkel 21/24



1 DKRZ Monitoring

2 Job Footprinting

3 Experiments

4 Evaluation

5 Summary



Evaluation

Score vs. Footprints

Red line represents the 0.998-quantile

� Metric scores

I 0: Normal I/O activity
I 1: High I/O activity
I 2: Critical I/O activity

� Job score = Sum of all metric scores
Job runtime

� 53 jobs show critical average I/O activity

I Determined by the 0.998-quantile
I In histogram right to the red line

� Intersection of score with footprinting
Footprint Match

Class Count Count in %
FP0 71 0 0
FP1 16003 12 22.64
FP2 406 0 0
FP3 162 0 0
FP4 2606 24 45.28
FP5 161 2 3.77
FP6 868 7 13.21
FP7 427 8 15.09

Footprinting Parallel I/O Eugen Betke, Julian Kunkel 23/24



1 DKRZ Monitoring

2 Job Footprinting

3 Experiments

4 Evaluation

5 Summary



Summary

Summary

� DKRZ monitoring system

I Open source components + self-developed collector
I Portable to the next HPC and other machines

� Job-Footprinting

I Fine-grained Categorization of jobs
I Insight look in the job

� Good evaluation approach required

Footprinting Parallel I/O Eugen Betke, Julian Kunkel 25/24


	DKRZ Monitoring
	Job Footprinting
	Experiments
	Evaluation
	Summary

