
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Adventures in NoSQL for
Scale-Up Computing
HPC-IODC Workshop

Jay Lofstead, Ashleigh Ryan, and
Margaret Lawson

June 20, 2019
SAND2019-2166 PE

Motivation

 US DOE Exascale Computing Project Annual
 SIRIUS project

Q: How do we make it easier for scientists to select a data set for
deep analysis once it is written?

A: Add user-defined tags and advanced searching capability
based on the tags and the data itself.

How did I get here?
 Margaret Lawson (UIUC/SNL) developed

EMPRESS in 2017
 SQLite database-based service to manage metadata,

particularly for custom metadata
 Accelerate data exploration based on searching for

data tags generated from lightweight analysis during
computation or output

 Challenge: how to query against values for custom
metadata tags?

 Insight: Columnar databases allow adding
arbitrary additional columns with typed data
you can query against (I think). Will this work
with performance?

3

How did I get here?

 Fall 2018 intern Ashleigh Ryan (GT) comes to the rescue
 Agreed to explore this seemingly simple question
 Did a tremendous job exploring the deadly terrain that is NoSQL

databases-–particularly with the intersection of an HPC cluster on a
restricted network.

 Primary database choice: Cassandra
 Secondary: Hbase

 Other NoSQL databases are either key-value, document
stores, or otherwise can’t work
 Software requirements that can’t be met solely as an end user, it must

be run as an OS service, or other non-starter requirements.

4

Goals and Restrictions

 Goals:
 Scale out tools easily deployable in scale up environment
 Flexible schema data storage with rich querying capability

 Restrictions
 Must be open source
 Must be easily end-user installable without heavy lifting from the

system administrators
 Must work as an embedded engine rather than a permanent service

5

What else is comparable?

 SoMeta

 MDHIM

 HDF5, ADIOS, PnetCDF, NetCDF

None of these address the desired flexibility and performance
for managing metadata, and in particular, data tagging and
searching.

6

What NoSQL databases

 We (Ashleigh) investigated several options

7

Database FOS Columnar/
KeyValue

Fault Tolerance General Language

Apache
Accumulo

✔ Columnar Write Ahead + HDFS Java

Cassandra ✔ Columnar Replication Cassandra Query
Language

Druid ✔ Columnar Replication + HDFS JSON over HTTP

Dynamo ✖ KV S3 AWS API

Hbase ✔ Columnar HDFS Java API

Vertica ✖ Columnar Varies SQL

Let’s Battle it Out

 Four rounds of problems that have to be solved
 What has the right features to be worth testing
 What is it going to take to get it working at all
 Can we make our queries work with any performance
 Battle scars and lessons for our next battle against scale out

computing tools

8

Round 1. Fight!

 NoSQL assumption: running on a cluster with full Internet
access from every node with no code deployment restrictions
and full control over the storage infrastructure.
 We fail this test miserably.

 HDFS requirement is a hard “no”
 We have our storage infrastructure defined already with burst buffer

and parallel storage deployed

 Full Internet access from the compute nodes is a hard “no”
 Getting TCP/IP to work properly is hard enough

 Not getting full source code is a soft “no”
 We’ll pay for support, but we need source to get it to work on our

messy hardware and software.
9

Round 1. Result

 Two potentially viable choices
 Cassandra – no HDFS and a C-based query API available
 Hbase – Java-based API and HDFS, but might work

 Chose Cassandra for the potential and active user community
for support

10

Round 2. Fight!

 Now to get Cassandra to work, just on a desktop on the
restricted network

 Problem 1: What do you mean I need to install a bunch of
packages from the Internet?

 Problem 2: What do you mean I have to run it either as a
service or as a separate process I interact with?

 Problem 3: What do you mean I have replication? Can’t I just
do a single storage node?

11

Round 2. Problem 1 Result

 Dependencies are a nightmare
 This is not unique to Cassandra

 Let’s spend a couple of weeks just generating a list of the
dependencies and figuring out how to build them from
source, in order, so I can build Cassandra.

 Ultimately it worked out, but it is a pain.

Other systems, like Ceph, can be dramatically worse for their list
of dependencies. Open source packages are nice, but dozens to
hundreds of dependencies is a recipe for weeks of work if you
have to do it manually. 12

Round 2. Problem 2 Result

 Cassandra wants to be your storage interface and therefore
look like a storage service

 How do you put a TCP/IP-based service on an IB network
when TCP/IP isn’t the native protocol?
 Yes, it can work, but configuration isn’t straightforward

 You can run it in a window and access that service from
another, but it isn’t a general solution.

 That C-based API from DataStax works great!

13

Round 2. Problem 3 Result

 Cassandra REALLY wants to use replication—even if you don’t

 Running on a single node was easy enough

 Deploying to the cluster and suddenly it wouldn’t run
anymore
 Even though the configuration set the replica count to ‘1’

Result: Even though the configuration said 1 replica, it had to be
explicitly set in code to ‘1’ again to make it work properly. The
error messages were baffling making debugging a series of trial
and error.

14

Round 3. Fight!

 Now that we have something working-ish, how about those
fancy queries we want to do?

 Problem 1: Ok, adding a column is straightforward. What do
you mean querying has limited functionality against that new
column?

 Problem 2: Wow, that is super limited, is there a way to avoid
doing table scans regularly?

15

Round 3. Problem 1 Result

 Cassandra’s core setup allows only special columns to have an
index on them. These are the only ones on which a query can
execute efficiently.

 Result: This is completely against what we were trying to do.
Is anything else (Hbase?) better?
 Nope. NoSQL is REALLY limited to get the performance
 Lots of Internet people say when asked about this, “why would you do

that? That isn’t how this is supposed to work.”
 Just do table scans for nearly all queries we want to perform.

This is a near fatal blow to the idea. Fortunately, there are still
options.

16

Round 3. Problem 2 Result

 Table scans. Really? What can be done?

 Enter: Map-Reduce
 It is possible to embed Spark into Cassandra

 Wait, that is another set of software dependencies and assorted
ugliness.

 But it can work!
 Should we switch to Hbase instead because of the built-in Hadoop?

Spark can cache Map-Reduce queries to mimic what we want,
but then it is memory bound—and won’t tell you when it throws
away cached results. It just runs slower when it is out of
memory.

17

Round 4. Fight!

 Battle scars and lessons learned

 Problem 1: Can this work at all with performance

 Problem 2: Can this software stack co-exist on scale up
platforms

 Problem 3: Is there a way to get what we want?

18

Round 4. Problem 1 Result

 Is there a performant option?

 Bottom line: NO

 Issue: NoSQL is set to query against a limited set of pre-
known parameters with the additional columns coming along
for the ride.
 Corollary: Doing a query for the presence or absence of a value for a

column is impossible (except for using Map-Reduce).

Rigid relational models are just a better fit for performance, but
it is hard to be the right kind of flexible.

19

Round 4. Problem 2 Result

 What about installing this software?

 Bottom Line: Maybe to yes.

 Issue: Lots of dependencies including a heavy assumption of
TCP/IP generates terrible network performance and a big
software footprint. Getting machine admins to agree to install
the behemoth will be difficult.

 This is solvable, but will take a lot of effort. The constant
talking to the Internet requires pre-caching things or
intercepting version checking. Not impossible, but annoying.

20

Round 4. Problem 3 Result

 Can we make this work?

 Bottom Line: Not using any existing software.

 Issue: relational databases are rigid for performance
scalability with arbitrary queries against a fixed schema.

 Issue: NoSQL databases are rigid for performance against a
small set of know values to then check if some other
attributes have been added. Looking based on attribute isn’t
a supported model.

21

Decision

 NoSQL has interesting ideas, but we can’t use the tools as is
on restricted clusters
 There are caveats that make it possible, but an end-user will find it

difficult to impossible making a general library infeasible.

 We have to start over if we want this to work. There is no
payoff for industry (or it would be done already) and it is a
high-risk prospect for research.
 HDF5 is the de-facto standard with NetCDF and ADIOS filling in the

gaps. Replacing any of these will require solid buy-in from a
community (Klasky, as a physicist promoting the tool, was the key for
ADIOS to make that jump).

 But that doesn’t mean I won’t try 

22

Questions?

gflofst@sandia.gov

23

