Desta the second a (1/0) Challenges

Construction of the second scientific Computing Diamond Light Source Ltd **Head of Scientific Computing**

andrew.j.Richards@diamond.ac.uk

77.0

Harwell Science and Innovation Campus

Diamond Light Source

Science SR Examples

Pharmaceutical manufacture &

Casting aluminium

Non-destructive imaging of fossils

Structure of the Histamine H1 receptor

Beamlines or Instruments

Beamline	2001	2002	2003	2004	2005 2006	2007	2008	2009	2010	201	1 2012	2013	2014	2015 20	6 20	017 🗄	2018
Phase 1			÷——			•											
102 Macromolecular Crystallography								Λ.			4:-		Ī				
103 Macromolecular Crystallography					:			U	Je	ra	τιο	SN					
104 Macromolecular Crystallography											-	-					
106 Nanoscience									n	er	rio						
I15 Extreme Conditions									Μ								
I16 Materials and Magnetism																	
118 Microfocus Spectroscopy																	
Phase II			-						<u> </u>		+	7					
I22 Non-Crystalline Diffraction																	
B16 Test Beamline							_										
I11 High Resolution Power Diffraction																	
I24 Microfocus MX																	
I19 Small Molecule Diffraction																	
B23 Circular Dichroism																	
I12 JEEP (Engineering, Environment & Processing)																	
I04-1 Monochromatic MX																	
I20 X-ray Spectroscopy (LOLA)											-						
107 Surface and Interface Diffraction (XENA)								-									
B22 Infrared Microscopy					-		-)								
110 BLADE: X-ray Dichroism & Scattering																	
B18 Core EXAFS							-	-	-								
113 X-ray Coherence and Imaging																	
109 SISA: Surfaces and Interfaces										-)					
Phase III																	
B21 High Throughput SAXS								-	-								
I23 Long Wavelength MX									:				Þ				
I05 ARPES																	
B24 - Cryo Transmission Microscope														>			
108 Soft X-ray Microscope (STXM)																	
I14 Hard X-ray Nanoscale Probe for Complex Systems (HXNP)									(_						
I21 Inelastic X-ray Scattering (IXS)																	
B07 Versatile Soft X-ray (VERSOX)																	
I15-1 X-ray Pair Scattering Distribution Function												Ļ	:				
VMXi Versatile MX in situ																	
VMXm Versatile MX microfocus																	
DIAD Dual Imaging and Diffraction																	
						-											

Beamlines by Village

113 X-ray Imaging (LI) and Coherence (LC)

Macromolecular CrystallogrepMyterials Soft Condensed Matter Spectroscopy

- Engineering and
- **Environment Surfaces** and Interfaces

A National User Facility for Biological Electron Cryo-microscopy (eBIC)

Wellcome Trust Strategic Award/MRC/BBSRC, applicants: Helen Saibil, Kay Grünewald, David Stuart, Gerhard Materlik

- Funded initially by the Wellcome Trust, MRC and BBSRC at level of £15.6 M over 5 years, augmented to ~£25 M by additional investment by the Trust in 2016
 - The facility currently includes:
 - 4 high-end 300kV automated cryo EMs (Titan Krios FEI)
 - 200 keV automated feeder instrument (Talos Arctica)
 - Cryo focussed ion beam instrument (SCIOS)
 - Sample prep incl. vitreous sectioning
 - Correlative fluorescence/EM
 - FEI Polara @OPIC Oxford for CAT 3 samples

ISME

Electron Microscope

- Life Science EMs
 - 2x Titan Krios Electron Microscopes
 - Gatan Quantum
 Detector 600MB/s
- 2x Physical Science EMs to come
- 2x further Life Science EMs to come

Data Flows

- 24/6 Operation, ~5000 hours beamtime per year
- ~30 Operational Beamlines
- ~6 Operational EM
 - Single stream performance > 900MB/s
 Newest filesystem :
 - Aggregate performance > 60GB/s R/W
 Existing file system(s)
 40GB/s

Typical User Setup

GDA – User Interface

Data Rates

- 2007 No detector faster than ~10 MB/sec
- 2009 Pilatus 6M system 60 MB/s
- 2011 25Hz Pilatus 6M 150 MB/s
- 2013 100Hz Pilatus 6M 600 MB/sec
- 2013 ~10 beamlines with 10 GbE detectors (mainly Pilatus and PCO Edge)
- 2016 Percival detector 6GB/sec

I04 has worked through a full dewar of 592 samples in 10hrs

EMERGENCY BEAM OFF

COC DE

.....

1.00

Exchange Time Improvements 103: 28s to 17s 104: 44s to 16s 104-1 59s to 22s

Scientific Computing and Infrastructure at Diamond

TECH SUPPORT

Mark Heron Diamond Light Source

Data Flow

Mark Heron Diamond Light Source

Network Bandwidth Balance

Moving Data Off Site a Science DMZ

Scientific Computing Infrastructure

- HPC / HTC Cluster (~3500 cores)
 - X86, Nvidia GPU (K80, P100)
- High Performance Storage (~7.5PB)
 - Lustre03, Lustre04, GPFS01, GPFS02
- Network infrastructure
 - 10Gb/s, 40Gb/s to some beamlines
- User Gateways, Visualisation, Data Transfer
 - NX Service, Globus endpoint

Support

- Predominantly Linux infrastructure,
- BUT also Windows support to beamlines/EM/etc and VM platforms
- Relies on working with Corporate IT and other groups in Controls and Scientific Software

Statistics: Data

Target	Available	Used	Performance
XFS	50 TB	47 TB	< 1GB/s
Lustre03	470 TB	370 TB	6 GB/s
Lustre04	140 TB	70 TB	2 GB/s
GPFS01	1 PB	700 TB	15 GB/s
GPFS02	4.7 PB	3.5 PB	40 GB/s
NEXT ???	~6-9PB	-	>60GB/s
STFC Archive	n/a	12 PB	12 TB – 50 TB per day ingest

Current File systems

- 2x Lustre systems sub 1PB. (not doing a great deal now but worthy of note)
 - DDN based systems SFA10K and SFA12K
- 2x GPFS
 - (1) 877TB usable (GPFS01)
 - 4 nsd servers
 - 2 protocol servers
 - *Over the last 6 months actual data
 - *Read 2GB/s
 - *Write 6GB/s
 - (2) 4.7PB usable (GPFS02)
 - 7 NSD servers, 4 protocol nodes
 - Netapp E series and EF for metadata
 - IB connected to storage
 - IB and 10G out the front
 - *40GB/s benchmarked throughput. Now in excess of as we have added disks

'Big' Data Lifecycle challenges

- How much do you mean by BIG?
- How 'FAST' do you need to analyse the data?
- What data can be THROWN AWAY?
 - (and at what stage?)
- How LONG do you need to keep the data?
- And WHERE? Where do you want to transfer the data to/from?
- And WHERE do we best do Post-Processing?

diamond

Scientific Computing

New Computer Room (CSCR3 – Inner courtyard)

Software Developments / Future ?

- HDF5 Virtual Dataset (VDS) to map multiple files into a single, coherent dataset "view" (i.e. a VDS)
 No longer use MPI-IO
- SWMR Single Write Multiple Read
 - HDF5 extension
- ZeroMQ increasingly used for data streaming
- FPGA?

Smarter data collection / filtering at source
 New detectors and data rates exceed disk bandwith

Detector Developments

Percival

- Main challenge: 6GB/s data rate, sustained forever(ish).
- Secondary processing challenge: pixel-per-pixel bit descrambling and pixel-per-pixel calibration algorithms prior to writing an "image" to disk.

Excalibur

- Data-rate 750MB/s * 2 channels.
- real problem: ptychography and tomo-ptychography very large scans with TB size datasets.
- Secondary processing challenge: block-by-block (i.e. each sensor chip) is angled and need to be rotated 90deg to turn into an "image". Not terribly difficult because of the low(ish) data-rate.
- Secondary processing challenge: on-the-fly compression. Data is sparse so we expect it to be relatively easy to get a good compression ratio.

Eiger and Eiger2

- Data-rate: variable, depending on compression ratio which depends on SNR. Typically the compressed stream fits in a single 40gbps NIC.
- Raw data rate: 4M pixel * 2bpp * 750Hz
- Pre-compressed data can not be processed on the fly before hitting disk.
- Main challenge: near 100% reliability and uptime! MX beamlines are data factories!
- All systems require a degree of parallel DAQ/processing and so that is a key challenge that we face in the software development of all of these systems. We are implementing a single DAQ framework to allow re-use of software for all of these systems.

New Eiger Detectors

- Eiger on VMXi, we currently see:
- Sustained (10 minutes+/indefinite) acquisitions at 500Hz, with typical compressed data size of 2.2Mbs per frame. This gives about ~ 9 Gbits/second.
- Full speed acquisition burst (30 60 seconds) at 750Hz, with typical compressed data size of 2.2Mbs per frame. This gives ~13 Gbits/second.
 - This is using 4 writing nodes split across 2 servers.

• Files contain 1000 frames, so in big acquisitions, it's possible to get reasonably large numbers of files being created in the same directory. (We once did a 500000 frame acquisition which created 500 files, though this is not a typical use case).

Monitoring IO

Monitoring IO

File system Challenges

- Complexity of overall setup
 - E.g. >30 + multi clusters in current GPFS setup
 - Trust relationships
 - Metanode issues ?
 - Other unkown issues
- Need for parallel I/O to cluster
 - Good single stream / single node performance
 - RDMA (typically over IB) need over ETH?
 - Currently restricts Lustre performance for example

NFS/CIFS etc presentation to clients

Thank you

