
SIG-IO 2018, 6th June 2018, Reading
Neil Massey1, David Hassell2, Matt Jones1,2 and Bryan Lawrence2,1

1NCAS/NCEO, Centre for Environmental Data Analysis,
RAL Space, Rutherford Appleton Laboratory, STFC, UK

2NCAS-Climate/CMS, Department of Meteorology,
University of Reading

neil.massey@stfc.ac.uk

Semantic storage of climate data on
object stores

mailto:Neil.massey@stfc.ac.uk

Abstract
s3-netCDF-python is a Python (and Cython) library that enables
writing and reading netCDF files to and from any storage
system that has an Amazon S3 API.

• S3 (simple storage solution) HTTP API used by
• Object stores
• Cloud-based storage (e.g. AWS)

• netCDF3 or netCDF4 (HDF5 based)
• netCDF file can be split into smaller “fragments”

• Read only part(s) of the file that are required
• Allow the parallel read and write of file fragments
• Just-in-time reading and writing

Context

• CEDA maintain a large archive of environmental data
– Satellite data (esp. Sentinel and LandSat)
– Climate and forecast data (CMIP5, ECMWF ERA-I, ERA-40)
– Air measurement campaigns (EUFAR)
– Ground based measurements
– Approximately 7 PB, including some data that is only on tape

• Provide access to the data to the scientific community and some
commercial companies.

• Centre for Environmental Data Analysis
• A division of RAL Space
• RAL Space is part of STFC

• CEDA is also part of NCAS and NCEO
• Government funded and research grants

• EU H2020

JASMIN

• For users it provides high-performance computing with:

– Access to the archive

– Storage on disk (user workspace, currently 10 PB) and tape

– Batch computing

– Virtualised computing

– Cloud computing

• A joint collaboration between CEDA and STFC SCD (Scientific

Computing Division)

• A "super data-cluster”

• a data-intensive computer

• … and a datacentre

• Brings the compute to the data

• and the data to the compute

JASMIN Phase 4

• JASMIN is currently undergoing a major upgrade

– 38.5 PB of storage is being added

• Including 5 PB of Object Storage

– 11 PB of POSIX storage will be retired by the end of 2018

• Currently the computing environments have direct POSIX

access to the data on disk

• However, with the IaaS (Infrastructure-as-a-Service) cloud

model this is undesirable and may not be possible

• Using storage with a (S3) HTTP API overcomes this problem

and provides access to the Object Store

– Also allows access to off-site storage (e.g. personal AWS)

Object Storage
• A computer storage architecture in which
Objects are stored in a flat structure

• Objects are identified by a unique key (a URL)

• Objects are organised into Buckets

• Object store can be accessed over a HTTP
interface
– Amazon’s S3 HTTP REST API is the most

popular
– Data is uploaded and downloaded using

PUT and GET operations respectively

• Supports two levels of metadata
– System level metadata
– Extendable metadata

• Allows searching for data without opening the
file and custom searches for user data

What is a netCDF file?

• Network Common Data Form

• Array oriented data format

– Multidimensional array variables

• Variables are typed (int, float, etc.)

– Coordinates for the dimensions (time, lat, lon, height, etc.)

– Metadata for the variables (typed, including string)

– Global metadata

– Can take a “slice” (subdomain) from an array

• http://www.unidata.ucar.edu/software/netcdf/docs/user_guide.html

http://www.unidata.ucar.edu/software/netcdf/docs/user_guide.html

Structure of a netCDF file

http://www.unidata.ucar.edu/software/netcdf/docs/netcdf_data_set_components.html

http://www.unidata.ucar.edu/software/netcdf/docs/netcdf_data_set_components.html

Structure of a netCDF file

netcdf cru_ts3.24.01.1901.1910.tmp.dat {
dimensions:

lon = 720 ;
lat = 360 ;
time = UNLIMITED ; // (120 currently)

variables:
double lon(lon) ;

lon:long_name = "longitude" ;
lon:units = "degrees_east" ;

double lat(lat) ;
lat:long_name = "latitude" ;
lat:units = "degrees_north" ;

double time(time) ;
time:long_name = "time" ;
time:units = "days since 1900-1-1" ;
time:calendar = "gregorian" ;

double tmp(time, lat, lon) ;
tmp:long_name = "near-surface temperature" ;
tmp:units = "degrees Celsius" ;
tmp:correlation_decay_distance = 1200. ;
tmp:_FillValue = 9.96920996838687e+36 ;
tmp:missing_value = 9.96920996838687e+36 ;

The most useful command: ncdump -h <filename>

Dimension definitions

Dimension variables

Attributes

Field Variable

Writing netCDF files to object store
• It’s easy enough to write the whole file as an object, using

minio API or boto3 API (Amazon’s API)
• Numerous disadvantages:

1. Have to read / write the entire file at once to the object store
2. Could use range function of (S3 API) but performance is unknown
3. Does not permit parallel read / writes
4. Have to read the entire file just to search the metadata!

• Instead we propose a method of splitting a netCDF file into
fragments consisting of:
1. A master array file, containing the variable definitions and metadata
2. A number of subarray files containing subdomains of the variable

data

HDF cloud and S3-netCDF

• HDF cloud from the HDF group also solves some of these
problems

• HDF cloud has a cluster / server architecture:
– The client connects to the cluster
– The cluster serves the data from the object store to the client
– The cluster load balances the requests

• S3-netCDF has a client-only model:
– The client connects directly to the object store
– The user is responsible for the load balancing

• We wanted to provide an easy to use library that can be used
in the user workspaces for their own data

HSDS / HDF Cloud

• Each cluster component is a Docker container
• Work done at CEDA to host in VMs (Vagrant / Ansible / init.d)
• Client connects using h5pyd Python library (HDF REST API)

HDF
chunk

HDF
chunk

HDF
chunk

Object Store

Meta
data

S3 API

Each object represents a HDF chunk

Async
node

Head
node

Service
node

Data
node

client

Service
node

Data
node

…

…

HDF
REST
API

Key differences between
HDF Cloud and S3netCDF4

HDF Cloud
• Any HDF file

• Connect using any HDF REST API
client

• Cluster oriented architecture

• Parallel reads / writes limited to
data nodes in the cluster

• Read / write fragments only to S3

• Fragments are HDF chunks with no
semantic information

S3netCDF4
• netCDF4 & netCDF3 only

• Python only (currently)

• Client oriented architecture

• Parallel reads / writes limited to
cores on the client machine

• Read / write fragments to S3,
OpenDAP or local disk

• Fragments are self contained
netCDF files

• Aggregation / data cube

S3-netCDF-python

• The library is implemented as a subclass of the standard
Unidata python package (netCDF4.Dataset)

• Three main components:
– The interface – matches netCDF4.Dataset as closely as possible

– A client to read / write objects from / to a S3 object store, with the
ability to stream to / from memory or to cache objects to disk, with
sensible choices made based on available memory, object size and
user input

– An array splitter to split large netCDF4 variables into smaller ones,
using the netCDF-CFA conventions

S3-netCDF software stack

_s3netCDF4

_netCDF4 _s3Client

numpy
minio API

(or boto3)

_CFAFunctions_s3netCDFIO File splitting

Treat netCDF

files on disk

and S3 equally

S3 access with local caching
Unidata

Main interface

S3 access, either API is fine

CFA conventions

• Climate and forecast (CF) aggregation rules
– Describe how multiple CF fields may be combined into one larger field
– CFA-netCDF conventions for their efficient storage in netCDF files
– Extension to netCDF via JSON encoded attributes

• A master array file (kBs in size)
– Domains and metadata for a number of variables
– Coordinates for the domains
– Metadata for the subarrays, position in the master array
– No field data

• A number of subarray files (a single object, MBs to GBs in size)
– Subdomain and metadata (replicated from master array)
– Coordinates for the subdomain
– Field data

CFA Conventions

File splitting strategy

• NetCDF files are first split by group, then variable, then each
variable is split into sub-domains. These sub-domains form
the sub-array files.

• Access to the variable data involves reading and writing to
the sub-array files.

• The size of the sub-arrays is optimised for two reading and
writing use cases:

1. The user reads a single spatial point (grid-box) for all the
timesteps

2. The user reads all the data (field) for a single timestep

File splitting strategy

1. N = nT/dT 2. N = nlat/dlat* nlon/dlon 3. Approximately equal
size “fragments”

N = number of operations needed to read entire timeseries / field
n = number of elements in the dimension
d = number of splits (divisions) in the dimension to form the sub-arrays

Reading / writing and data collection

• Client based architecture
– A user library
– Number of parallel reads limited to cores on client machine
– Could be containerised (Docker) and multiple instances load-balanced

(Kubernetes) for a server architecture

• Reading / writing consists of three stages:
– Determine which subarrays are in the slice of the master array
– Fetch the subarray data to either memory or a cached file
– Copy the subarray data from memory to a memory mapped array

S3netCDF4

Object Store
user

S3netCDF
S3 API

Local
cache

Files split into CFA-
netCDF sub-array

files using the
variable splitting

algorithm

Streaming CFA-netCDF files to / from S3 object store

Why “semantic”?

• The master array file contains all the metadata and domains
for all the subarrays
– Only need to read the master array file to search the data

• Each subarray file contains all of its metadata and subdomain
as well
– Can reconstruct the master array file if it is lost

• The array splitter knows what each dimension represents
(time, latitude, longitute, etc.) and acts accordingly

• Also good for aggregation
– Add field data as it becomes available, e.g. each timestep of a GCM

run
– No need to rewrite the entire file – just the master array file and new

subarray file

Current status and future work

• Current status:
– Read / write to object store, disk or openDAP
– Can take a slice, and only the subarray files in the slice are read from /

written to
– Mostly code compatible with netCDF4
– Read and write subarray files in parallel (Python threads found to be

the fastest)

• Future work:
– SemSL – Semantic storage layers

SemSL
Beyond object stores and netCDF

• ESiWACE project to expand on the capabilities of S3-netCDF

• Extend the fragmenting to other file formats:

– netCDF *

– HDF5 *

– ESA SAFE

– Tar files

– Zip files

• Each of these “frontends” will be based upon existing

libraries, e.g. netCDF4, h5py, etc.

– Inherited and overloaded member functions where possible

SemSL
Beyond object stores and netCDF

• Extend the write capability to other storage technologies:
– S3 / object store / AWS *

– POSIX disk *

– Parallel file systems

– FTP *

– Tape

• These “backends” will be based up existing libraries:
– Boto3

– FTPlib

SemSL – software architecture

Routing Layer (Native interfaces or SemSL)

<<netcdf4-python>> <<h5py>> ...

Connection

Management

Memory Management Layer & Toolbox

(Populates Arrays known to library interfaces,

e.g. numpy for netcdf4-python)

HDF or NetCDF or … Files

Native

Libraries

Cache

Management

Storage Interface Layer

(Plugins for POSIX, S3, FTP, OD, ET etc)

Aggregation Layer & Toolbox

(Handles, e.g. CFA, interpret or pass through)

Native Files

SemSL

• The Memory Managment layer creates memory-mapped
array objects, or memory-mapped file objects for non- array
file-formats

• The Aggregation Layer handles the reading and writing of a
Master-File and its Fragments

• Cache Management: A virtual or physical cache to temporarily
stage files

• The Connection Management function allows connections to
persist and be reused when reading / writing fragments

• The Storage interface layer provides a common interface to
any number of external storage systems

Acknowledgements

• This work has been supported primarily by European research

funded by the H2020 research and innovation project

ESIWACE, under grant agreement 675191.

• Additional support was received from UK Natural

Environment Research Council national capability funding for

the National Centre for Atmospheric Science (NCAS).

• None of it would have been possible without excellent

support from the JASMIN systems team: Jonathan Churchill,

Cristina Delcano and Athanasios Kanaris.

References

• S3-netCDF-python github
https://github.com/cedadev/S3-netcdf-python

• Unidata netCDF4 package
http://unidata.github.io/netcdf4-python/

• netCDF CFA conventions
http://www.met.reading.ac.uk/~david/cfa/0.4/

https://github.com/cedadev/S3-netcdf-python
http://unidata.github.io/netcdf4-python/
http://www.met.reading.ac.uk/~david/cfa/0.4/

Example code - write
create a NETCDF4 file and upload to S3 storage
this just follows the tutorial at http://unidata.github.io/netcdf4-python/
with Dataset(S3_WRITE_NETCDF_PATH, mode='w', diskless=True, format="CFA3") as s3_data:

create the dimensions
leveld = s3_data.createDimension("level", len(levels_data))
timed = s3_data.createDimension("time", None)
latd = s3_data.createDimension("lat", 196)
lond = s3_data.createDimension("lon", 256)
create the dimension variables
times = s3_data.createVariable("time", "f8", ("time",))
levels = s3_data.createVariable("level", "i4", ("level",))
latitudes = s3_data.createVariable("lat", "f4", ("lat",))
longitudes = s3_data.createVariable("lon", "f4", ("lon",))
create the field variable
temp = s3_data.createVariable("tmp", "f4", ("time", "level", "lat", "lon"))

add some attributes
s3_data.source = "netCDF4 python module tutorial"
latitudes.units = "degrees north"
longitudes.units = "degrees east"
levels.units = "hPa"
temp.units = "K"
times.units = "hours since 0001-01-01 00:00:00.0"
times.calendar = "gregorian"

Example code - read
Test opening a CFA file on the object
with Dataset(WAH_S3_DATASET_PATH, 'r') as nc_file:

nc_var = nc_file.getVariable("field8")
print nc_var.shape
print nc_var.dimensions
print nc_var.name
print nc_var.datatype
print nc_var.size
print type(nc_var)
print np.mean(nc_var[0:10,0,40:80,40:80])

load the original file and take the mean
with Dataset(WAH_NC4_DATASET_PATH) as src_file:

src_var = src_file.variables["field8"]
print type(src_var)
print np.mean(src_var[0:10,0,40:80,40:80])

