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Warning!

• Terminology will be annoying:
• NVDIMM

• NVRAM

• SCM

• B-APM

• …….

• My fault, but people argue which is the most 
appropriate

• So using them all to annoy as many people as 
possible 
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New Memory Hierarchies 

• High bandwidth, on processor memory
• Large, high bandwidth cache
• Latency cost for individual access may be an 

issue

• Main memory
• DRAM
• Costly in terms of energy, potential for lower 

latencies than high bandwidth memory

• Byte-Addressable Persistent Memory
• High capacity, ultra fast storage
• Low energy (when at rest) but still slower 

than DRAM
• Available through same memory controller 

as main memory, programs have access to 
memory address space
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Non-volatile memory

• Non-volatile RAM
• 3D Xpoint (Intel/Micron)
• STT-RAM

• Much larger capacity than DRAM
• Hosted in the DRAM slots, controlled by a standard 

memory controller

• Slower than DRAM by a small factor, but 
significantly faster than SSDs

• STT-RAM
• Read fast and low energy
• Write slow and high energy

• Trade off between durability and performance

• Can sacrifice data persistence for faster writes



SRAM vs NVRAM

• SRAM used for cache

• High performance but costly
• Die area

• Energy leakage

• DRAM lower cost but lower performance
• Higher power/refresh requirement

• NVRAM technologies offer
• Much smaller implementation area

• No refresh/ no/low energy leakage

• Independent read/write cycles

• NVDIMM offers
• Persistency

• Direct access (DAX)



NVDIMMs

• Non-volatile memory already exists
• NVDIMM-N: 

• DRAM with NAND Flash on board
• External power source (i.e super capacitors)
• Data automatically moved to flash on power failure with capacitor support, moved 

back when power restored
• Persistence functionality with memory performance (and capacity)

• NVDIMM-F:
• NAND Flash in memory form
• No DRAM
• Accessed through block mode (like SSD)

• NVDIMM-P:
• Combination of N and F
• Direct mapped DRAM and NAND Flash
• Both block and direct memory access possible

• 3D Xpoint -> Intel Optane DC Persistent Memory
• NVDIMM-P like (i.e. direct memory access and block)
• But no DRAM on board
• Likely to be paired with DRAM in the memory channel
• Real differentiator (from NVDIMM-N) likely to be capacity and cost



Memory levels

• B-APM in general is likely to have different 
memory modes* (like MCDRAM on KNL):

• Two-level memory (2LM)

• One-level memory (1LM) 
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*https://www.google.com/patents/US20150178204



Byte-Addressable Persistent 
Memory

• The “memory” usage model allows for the 
extension of the main memory 

• The data is volatile like normal DRAM based main 
memory

• Potential for very large memory spaces at reduced cost 
(capital and recurrent) compared to DRAM

• The “storage” usage model which supports the use 
of NVRAM like a classic block device

• E.g. like a very fast SSD

• The “application direct” (DAX) usage model maps 
persistent storage from the NVRAM directly into 
the main memory address space

• Direct CPU load/store instructions for persistent main 
memory regions



Programming B-APM

• Block memory mode
• Standard filesystem api’s

• Will incur block mode overheads (not byte 
granularity, kernel interrupts, etc…)

• App Direct/DAX mode
• Volatile memory access can use standard 

load/store
• NVM library

• pmem.io/PMDK

• Persistent 
load/store

• memory mapped 
file like 
functionality 



I/O



I/O Performance

• https://www.archer.ac.uk/documentation/white-papers/parallelIO-
benchmarking/ARCHER-Parallel-IO-1.0.pdf



I/O Performance

MPI I/O 768 processes, 12GB data set

Lustre: 4 stripes Lustre: max stripes



I/O Performance

HDF5 on MPI-I/O 768 processes, 12GB data set

Lustre: 4 stripes Lustre: max stripes



I/O Performance

NetCDF on HDF5 768 processes, 12GB data set

Lustre: 4 stripes Lustre: max stripes



ARCHER workload



Burst Buffer

• Non-volatile already becoming part of HPC hardware 
stack

• SSDs offer high I/O performance but at a cost
• How to utilise in large scale systems?

• Burst-buffer hardware accelerating parallel filesystem
• Cray DataWarp

• DDN IME (Infinite Memory Engine)



Burst buffer
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I/O application patterns
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Enabling new I/O
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Exploiting distributed storage



Using distributed storage

• Without changing applications
• Large memory space/in-memory database etc…
• Local filesystem

• Users manage data themselves

• No global data access/namespace, large number of files

• Still require global filesystem for persistence



Using distributed storage

• Without changing applications
• Filesystem buffer

• Pre-load data into NVRAM from filesystem

• Use NVRAM for I/O and write data back to filesystem at 
the end

• Requires systemware to preload and postmove data

• Uses filesystem as namespace manager



Using distributed storage

• Without changing applications
• Global filesystem

• Requires functionality to create and tear down global 
filesystems for individual jobs

• Requires filesystem that works across nodes
• Requires functionality to preload and postmove filesystems
• Need to be able to support multiple filesystems across 

system



Using distributed storage

• With changes to applications
• Object store

• Needs same functionality as global filesystem

• Removes need for POSIX, or POSIX-like functionality



Using distributed storage

• New usage models
• Resident data sets

• Sharing preloaded data across a range of jobs

• Data analytic workflows

• How to control access/authorisation/security/etc….?

• Workflows
• Producer-consumer model

• Remove filesystem from intermediate stages



Using distributed storage

• Workflows
• How to enable different sized applications?

• How to schedule these jobs fairly?

• How to enable secure access?



The challenge of distributed 
storage

• Enabling all the use cases in  multi-user, multi-job 
environment is the real challenge

• Heterogeneous scheduling mix

• Different requirements on the SCM

• Scheduling across these resources

• Enabling sharing of nodes

• Not impacting on node compute performance

• etc….

• Enabling applications to do more I/O
• Large numbers of our applications don’t heavily use 

I/O at the moment

• What can we enable if I/O is significantly cheaper?



Potential solutions

• Large memory space

• Burst buffer

• Filesystem across NVRAM in nodes

• HSM functionality

• Object store across nodes

• Checkpointing and I/O libraries

• Much of the above require active systemware
• Integration with the job scheduler
• Data scheduler for “automatic” data movement
• Namespace provision and distributed -> single dataview

management



NEXTGenIO Systemware



Compute node systemware



User node systemware



Summary

• Byte-Addressable Persistent Memory is here
• Price and capacity remains to be seen, but initial 

indications are interesting (large, cheaper than DRAM 
on a per GB)

• In-node persistent storage likely to come to (maybe 
some) HPC and HPDA systems shortly

• Applications can program directly but….
• …potentially systemware can handle functionality for 

applications, at least in transition period

• Interesting times
• Convergence of HPC and HPDA (maybe)
• Different data usage/memory access models may 

become more interesting
• Certainly benefits for single usage machines, i.e. 

bioinformatics, weather and climate, etc…



Further reading

• http://www.nextgenio.eu

• Architectures for High Performance Computing 
and Data Systems using Byte-Addressable 
Persistent Memory 
http://arxiv.org/abs/1805.10041


