Cost and Performance Modeling for Earth System Data Management and Beyond

Jakob Luettgau, Julian Kunkel

Deutsches Klimarechenzentrum GmbH University of Reading

HPC-IODC 2018

- **3** Building Blocks
- 4 Scenarios
- 5 Standards?

6 Summary

Disclaimer: This material reflects only the author's view and the EU-Commission is not responsible for any use that may be made of the information it contains

Motivation	Models	Building Blocks	Scenarios	Standards?	Summary
●○	୦୦୦		00	000	○

Challenges in Managing HPC Storage

- Applications create significantly more data
 - Climate/Weather: higher model resolution and larger ensembles

More observational data from different sources

Increasingly heterogeneous storage landscape

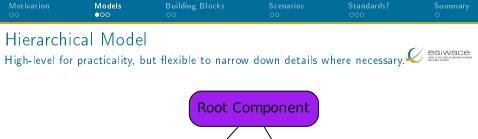
- Recent technological innovations
 - ▶ NVM, HBM, Burst Buffers, ...
- Provides cost saving opportunities
- Induces costs to adapt architecture, interfaces and applications
- How to identify good configurations?

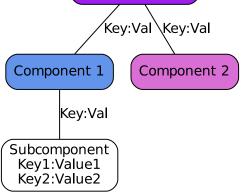
Modeling and communication of system setup & behavior

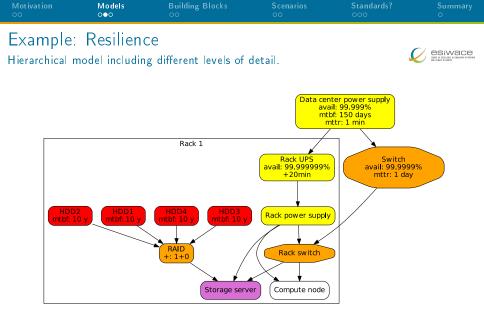
- Useful to conduct what-if studies
- But no standard available
 - ▶ Every HPC site has its own representation of their HPC cluster
- Users have difficulties to understand the model's implications
- Graph based models were successfully applied in industry

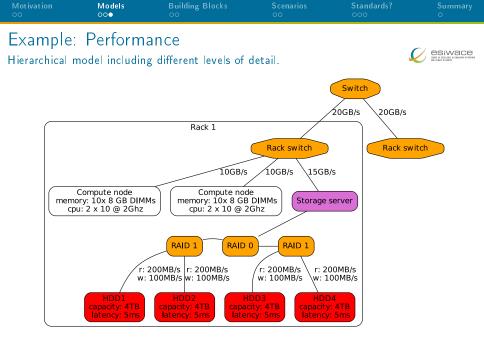
Jakob Luettgau, Julian Kunkel (DKRZ)

esiwace

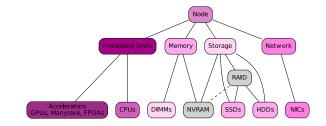

Can we use a graphical and graph model for:

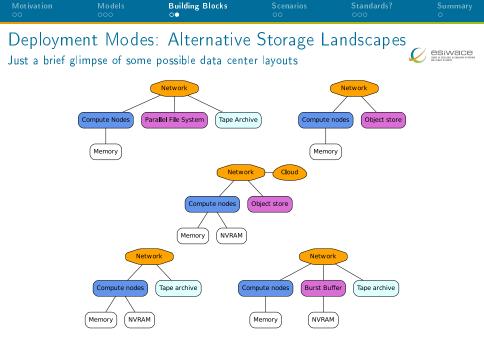

- Modeling system topology
- ▶ I/O path
- Performance behavior
- Resilience
- 🕨 Costs, Power


Is there a way to standardize and communicate such models?


Approach

- Develop example models with trees/graphs
- Explore models for alternative DKRZ system configurations





Motivation 00	Models	Building Blocks ●○	Scenarios 00	Standards?	Summary ○
Building	Blocks: N	lodes			
Attributing C	ost or Power	Consumption by Sub	-Component		

Costs/Power of a sub-component is attributed to parent
 Actual Key/Value annotation with costs is not shown
 Color (e.g., darkness) could encode the importance!
 Problem: sharing of functionality like NVRAM
 Some components may have alternative access path like RAID

Goal	
 Investigate alternative storage landscapes for same investme Reduce storage in favor of compute Switch to object storage in favor of compute 	ent
 Assumptions: object storage costs 1/2 of PFS (vendor hint Use a tabular representation)
 Often vendors have spreadsheets to make such calculations Use factors to indicate how much more/less Unchanged values are from the default 	
Is it harder to see how costs and performance come together	er?

Motiva 00	ition Models 000	Building 00	Blocks	Scenarios ○●	Sta 00		ummary
Exa	mple Scenari	os for Mi	stral a	at DKRZ			
		Mistral		own PFS, spent rs on compute		to Object Storage, s spent on compute	_
	Characteristics	Value	Factor	New value	Factor	New Value	_
	Performance Nodes Node performance	3.1 PF/s 2882 1.0 TF/s	1.17 1.17	3.6 PF/s 3370	1.19 1.19	3.7 PF/s 3430	=
	System memory Network ∣inks	200 ŤB 3100	1.17 1.12	234 TB 3450	1.19 1.15	238 TB 3565	_
	Storage capacity Storage throughput Storage servers	52 PB 700 GB/s 130	0.5 0.5 0.5	26 PB 350 GB/s 65	0.9 0.375 0.75	47 PB 262 GB/s 98	
	Disk drives Archive capacity Archive throughput	10600 500 PB 18 GB/s	0.5	5300	0.74	7800	-
	Compute costs Network costs Storage costs Archive costs Building costs	15.75 M EUR 5.25 M EUR 7.5 M EUR 5 M EUR 5 M EUR 5 M EUR	1.17 1.10 0.5	19.53 M EUR 6.04 M EUR 3.75 M EUR	1.24 0.98 0.5	19.53 M EUR 5.15 M EUR 3.75 M EUR	=
	Investment	38.5 M EUR		38.41 EUR		38.43 M EUR	_
	Compute power Network power Storage power	1100 kW 50 kW 250 kW	1.19 0.5	1290 kW 125 kW	1.10 0.75	1309 kW 188 kW	-
	Archive power Power consumption	25 kW 1.20 MW		1.49 MW		1.57 MW	-

Case-study comparing Mistral as installed to a deployment with a reduced disk system and a deployment using object storage instead of a file system.

Jakob Luettgau, Julian Kunkel (DKRZ)

HPC-IODC 2018 11 / 15

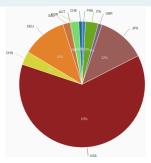
Activity: Comprehensive Data Center List (CDCL) 🖌

Contains characteristics for sites, supercomputer, and storage https://www.vi4io.org/hpsl/start

System Model

- Hierarchical system model
 - Now based on an extensible JSON schema, optimized editor
 - Supports logical components and subcomponents
- Characteristics and peak values
- Measured values like Top-500

Components with characteristics


- Site, supercomputer, online storage, tape archives
- Compute nodes, storage nodes, local storage, accelerators, ...
- Supporting: e.g., CPU type, memory available, ...

esiwace

Motivation	Models	Building Blocks	Scenarios	Standards?	Summary
00	000		00	○●○	○
CDCL St	orage Vie	w 2018			

Features

Table view with selectable columns Flexible metrics selection/aggregation Multi-year analysis will be supported

Capacity grouped by country

*	site.institution	site.storage system.net capacity	site.supercomputer.compute peak	site.supercomputer.memory capacity
		in PiB	in PFLOPS	in TB
1	Oak Ridge National Laboratory	250.04	220.64	3511.66
2	Los Alamos National Laboratory	72.83	11.08	2110.00
3	German Climate Computing Center	52.00	3.60	683.60
4	Lawrence Livermore National Laboratory	48.85	20.10	1500.00
5	RIKEN Advanced Institute for Computational Science	39.77	10.62	1250.00
6	National Center for Atmospheric Research	37.00	5.33	202.75
7	National Energy Research Scientific Computing Center	30.00	4.90	224.30
8	National Center for Supercomputing Applications	27.00	13.40	1649.27
9	Global Scientific Information and Computing Center	25.84	17.89	275.98
10	Joint Center for Advanced HPC	24.10	24.91	919.29
11	Cineca	23.71	12.93	455.17
12	Argonne National Laboratory	21.32	10.00	768.00
13	Forschungszentrum Jülich	20.30	6.25	454.15
14	Japan Agency for Marine-Earth Science and Technology	19.62	1.31	320.00
15	Korea Meteorological Administration	19.27	2.90	0.00
16	National Supercomputing Center in Wusi	17.76	125.00	1310.00
17	Maryland Advanced Research Computing Center	17.00	0.87	92.67
18	King Abdullah University of Science and Technology	16.95	7.20	790.00
19	Air Force Research Laboratory	15.54	5.61	447.00
20	Leibniz Supercomputing Centre	15.00	3.58	194.00
21	National Supercomputing Center in Guangzhou	14.40	59.60	1286.00
22	National Aeronautics and Space Administration	14.21	4.97	664.00
23	Texas Advanced Computing Center	12.43	9.60	270.00
24	Engineer Research and Development Center - US Army Corps	10.65	4.57	441.60
25	Sandia National Laboratories	9.93	0.50	22.10
26	Karlsruhe Institute of Technology (KIT)	9.57	1.61	222.00
27	High-Performance Computing Centre Stuttgart	8.85	7.40	964.00
28	Total Exploration Production	8.17	6.71	54.00
29	Swiss National Supercomputing Centre	7.73	25.32	521.00
30	Eni S.p.A.	6.05	4.60	0.00
31	Nagoya University	5.33	3.20	92.00
32	PGS	5.33	5.37	584.00
33	European Centre for Medium-Range Weather Forecasts	5.33	4.25	0.00
34	Army Research Laboratory DoD Supercomputing Resource	4.09	3.70	424.00
35	University of Edinburgh	3.91	2.55	0.00
36	Pacific Northwest National Laboratory	2.40	3.40	184.00
37	Navy DoD Supercomputer Resource Center	2.11	2.05	0.00
38	Vienna Scientific Cluster	1.81	0.68	42.18
39	Center for Scientific Computing	0.75	0.51	77.57

- Towards Javascript for embedding into a data center web page
- Allowing the site to describe and visualize their system
- Hosted by the site directly
- Allowing a simple export into VI4IO data center list
- ⇒ Towards a **standardized presentation** of systems !

- Graph modeling is useful for various reasons
 - Approach balances practicality with opportunity to add details
- There exists no appropriate standard
- Case-study for alternative storage landscapes for Mistral
- We believe standards accelerate comparison and analysis

Outlook

- Standardized description for HPC users, system developers
- Machine readable specifications
- Compatible with modeling tools of community
- Specifications of components should be provided by vendors

We welcome interest in standardization around this topic!

The ESiWACE project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No **675191**

Disclaimer: This material reflects only the author's view and the EU-Commission is not responsible for any use that may be made of the information it contains

Integration with Earth System Data Middleware CONTRACTOR OF CO Adaptively choose backends. Discriminate by data, metadata and access type. Application1 Application2 Application3 cation3 ESD CLI Tools esd-FUSE NetCDF4 (patched) GRIB HDF5 VQL (unmodified) HDF5-High-level H5T H5P/FAPL H5F H5D H5A H5G H5L VOL H5NL SQLite Plugin Earth System Data Middleware H5VL native (Plugin) H5VL Callbacks ESD Interface Site Configuration In-Memory Scheduler Datatypes SOLite Driver Structure Lavout Performance Mode Metadata Storage Backend Interface Backend Interface NoSQL RDRMS Node Local Object Storage : POSIX-IO SQLite Lustre Tane