
Exploiting Non-volatile
memory for HPC I/O

Juan F. R. Herrera, Adrian Jackson, et al.

EPCC, The University of Edinburgh, UK

HPC-IODC workshop. Frankfurt, 28th June 2018

Outline

ÅWhat is NEXTGenIO?

ÅHardware
ÅB-APM

ÅArchitectures

ÅSoftware
ÅSystemware SW

ÅProfiling tools

ÅApplications

ÅSummary

2

What is NEXTGenIO?

ÅNext Generation I/O for the Exascale

ÅAddressing the I/O bottleneck of HPC
workloads through exploitation of NVRAM
technologies

ÅAim: bridging the gap between memory and
storage
ÅMemory: fast read/writes ïsmall capacity

ÅStorage: slow read/writes ïlarge capacity

3

What is NEXTGenIO?

ÅEC H2020 project

Å48-month duration

Å8.1 million ú(50% HW)

Å8 partners, covering:
ÅHardware

ÅHPC centres and uses

ÅSoftware

ÅTools development

4

NEXTGenIO objectives

ÅHardware platform prototype to investigate
applicability for high performance and data-
intensive computing

ÅUnderstand how best to exploit NVRAM

ÅDevelop the necessary systemware software to
enable (Exascale) application execution on the
hardware platform

Systemware SW must understand extra level present in the
memory hierarchy

ÅStudy application I/O profiles and I/O workloads
How different I/O behaviour and scheduling policies will impact job
throughput

5

Project hardware and software!

OpenFOAM running on
Intel NVDIMMs in Fujitsu
motherboard running on
BSC echoFS filesystem

New Memory Hierarchies

ÅHigh bandwidth, on processor memory
ÅLarge, high bandwidth cache

ÅLatency cost for individual access may be an
issue

ÅMain memory
ÅDRAM

ÅCostly in terms of energy, potential for lower
latencies than high bandwidth memory

ÅByte-Addressable Persistent Memory
(B-APM)
ÅHigh capacity, ultra fast storage

ÅLow energy (when at rest) but still slower
than DRAM

ÅAvailable through same memory controller
as main memory, programs have access to
memory address space

Memory

Storage

Cache

HBW Memory

Slow Storage

Cache

NVRAM

Fast Storage

Memory

Non-volatile memory

ÅNon-volatile RAM
Å3D Xpoint (Intel/Micron) (Intel Optane DC Persistent

Memory)
ÅOther technology is being developed: STT-RAM

ÅMuch larger capacity than DRAM
ÅHosted in the DRAM slots, controlled by a standard

memory controller

ÅSlower than DRAM by a small factor, but
significantly faster than SSDs

ÅNVDIMM offers
ÅPersistency
ÅDirect access (DAX) (cache line data access)

NVDIMMs

Å3D Xpoint -> Intel Optane DC Persistent
Memory
ÅNVDIMM-P like (i.e. direct memory access and

block device access can be added on top)

ÅNo DRAM on board

ÅLikely to be paired with DRAM in the memory
channel

ÅReal differentiator (from NVDIMM-N) likely to be
capacity and cost

Memory levels

ÅB-APM in general is likely to have different
memory modes* (like MCDRAM on KNL):
ÅTwo-level memory (2LM)

ÅOne-level memory (1LM)

10

Cache
Memory
Regions

Processor

DRAM

O
S

 M
a

in
 M

e
m

o
ry

SCM

DRAM
Memory

Processor

SCM

Application
Direct

Regions

O
S

 M
a

in
 M

e
m

o
ry

*https://www.google.com/patents/US20150178204

https://www.google.com/patents/US20150178204

Byte-Addressable Persistent
Memory

ÅThe ñmemoryò usage model allows for the
extension of the main memory
ÅThe data is volatile like normal DRAM based main

memory
ÅPotential for very large memory spaces at reduced cost

(capital and recurrent) compared to DRAM

ÅThe ñstorageò usage model which supports the use
of NVRAM like a classic block device
ÅE.g. like a very fast SSD

ÅThe ñapplication directò (DAX) usage model maps
persistent storage from the NVRAM directly into
the main memory address space
ÅDirect CPU load/store instructions for persistent main

memory regions

Programming B-APM

ÅBlock memory mode
ÅStandard filesystemAPIôs

ÅWill incur block mode overheads (not byte
granularity, kernel interrupts, etcé)

ÅApp Direct/DAX mode
ÅVolatile memory access can use standard

load/store
ÅNVM library

Åpmem.io/PMDK

ÅPersistent
load/store

Åmemory mapped
file like
functionality

Burst Buffer

ÅNon-volatile already becoming part of HPC hardware
stack

ÅSSDs offer high I/O performance but at a cost
ÅHow to utilise in large scale systems?

ÅBurst-buffer hardware accelerating parallel filesystem
ÅCray DataWarp

ÅDDN IME (Infinite Memory Engine)

Burst buffer

high performance network

external filesystem

compute nodes

high performance network

external filesystem

compute nodes

burst
filesystem

Exploiting distributed storage

Filesystem

Memory Memory Memory Memory Memory Memory

Node Node Node Node Node Node

Network

Filesystem

Network

Memory

Node

NVRAM

Memory

Node

NVRAM

Memory

Node

NVRAM

Memory

Node

NVRAM

Memory

Node

NVRAM

Memory

Node

NVRAM

Filesystem

Network

Memory

Node

NVRAM

Memory

Node

Memory

Node

NVRAM

Memory

Node

Memory

Node

NVRAM

Memory

Node

Using distributed storage

ÅWithout changing applications
ÅLarge memory space/in-memory database etcé
ÅLocal filesystem

ÅUsers manage data themselves

ÅNo global data access/namespace, large number of files

ÅStill require global filesystem for persistence

Filesystem

Network

Memory

Node

/ tmp

Memory

Node

/ tmp

Memory

Node

/ tmp

Memory

Node

/ tmp

Memory

Node

/ tmp

Memory

Node

/ tmp

Using distributed storage

ÅWithout changing applications
ÅFilesystem buffer

ÅPre-load data into NVRAM from filesystem

ÅUse NVRAM for I/O and write data back to filesystem at
the end

ÅRequires systemware to preload and postmove data

ÅUses filesystem as namespace manager

Filesystem

Network

Memory

Node

buffer

Memory

Node

buffer

Memory

Node

buffer

Memory

Node

buffer

Memory

Node

buffer

Memory

Node

buffer

Using distributed storage

ÅWithout changing applications
ÅGlobal filesystem

ÅRequires functionality to create and tear down global
filesystems for individual jobs

ÅRequires filesystem that works across nodes

ÅRequires functionality to preload and postmove filesystems

ÅNeed to be able to support multiple filesystems across
system

Filesystem

Network

Memory Memory

Node

Memory Memory Memory Memory

Node

Node NodeNodeNode

Filesystem

Using distributed storage

ÅWith changes to applications
ÅObject store

ÅNeeds same functionality as global filesystem

ÅRemoves need for POSIX, or POSIX-like functionality

Filesystem

Network

Memory Memory

Node

Memory Memory Memory Memory

Node

Node NodeNodeNode

Object store

Using distributed storage

ÅNew usage models
ÅResident data sets
ÅSharing preloaded data across a range of jobs

ÅData analytic workflows

ÅHow to control access/authorisation/security/etcé.?

ÅWorkflows
ÅProducer-consumer model

ÅRemove filesystem from intermediate stages

Job 1

Filesystem

Job 2 Job 3 Job 4

Using distributed storage

ÅWorkflows
ÅHow to enable different sized applications?

ÅHow to schedule these jobs fairly?

ÅHow to enable secure access?

Job 1

Filesystem

Job 2

Job 3

Job 4Job 2

Job 2 Job 2 Job 4

The challenge of distributed
storage

ÅEnabling all the use cases in multi-user, multi-job
environment is the real challenge
ÅHeterogeneous scheduling mix

ÅDifferent requirements on the SCM

ÅScheduling across these resources

ÅEnabling sharing of nodes

ÅNot impacting on node compute performance

Åetcé.

ÅEnabling applications to do more I/O
ÅLarge numbers of our applications donôt heavily use

I/O at the moment

ÅWhat can we enable if I/O is significantly cheaper?

Potential solutions

ÅLarge memory space

ÅBurst buffer

ÅFilesystem across NVRAM in nodes

ÅHSM functionality

ÅObject store across nodes

ÅCheckpointing and I/O libraries

ÅMuch of the above require active systemware
ÅIntegration with the job scheduler

ÅData scheduler for ñautomaticò data movement

ÅNamespace provision and distributed -> single dataview
management

Software

ÅSystemware software
ÅSLURM ïjob scheduler

ÅData scheduler

ÅDAOS and dataClay ïobject stores as alternatives
to file systems

ÅechoFS ïmulti-node NVRAM file system

ÅProfiling tools
ÅArm Map

ÅScoreP / Vampir

ÅApplications

24

NEXTGenIO Systemware

Compute node systemware

User node systemware

Profiling tools

ÅTwo profiling tools:
ÅMap (Arm)

ÅScoreP / Vampir (TUD)

ÅFeedback has been provided to the developers
on features that would be useful towards
debugging and performance analysis in the
prototype

28

Profiling tools: features

ÅAbility to see the activity timeline of a specific rank

ÅAbility to distinguish I/O to disk and I/O to NVRAM

ÅReporting memory usage of NVRAMs

ÅBoth tools will extract memory usage information in
1LM and 2LM modes

ÅReporting background I/O transfer between disk
and NVRAM (echoFS)

ÅOn ARCHER
ÅLustre data statistics reported per node

ÅSystem power usage (through IPMI) per node

29

Evaluation methodology:
objectives

ÅDefine and maintain a suite of applications
and testcases that will be used to evaluate the
NEXTGenIO technology

ÅCarry out systematic tests and evaluation as
technology results become available

ÅFacilitate co-design by providing clear and
constructive feedback to the technology work
packages

ÅClearly document the benefits of the
NEXTGenIO technology, indicate its impact
and sketch future lines of development

30

Evaluation methodology: apps

Combination of traditional and novel HPC
applications

ÅOpenFOAM: CFD

ÅCASTEP: chemistry

ÅMONC: cloud modelling

ÅHalvade: genome sequencing

ÅOSPRay: ray-tracing

ÅIFS: weather forecasting

ÅK-means: machine learning

ÅTiramisu: deep learning

31

Evaluation methodology:
scenarios

1. Baseline measurements in todayôs systems:
ÅUse of ARCHER (Cray XC30)

ÅUse of ECMWF cluster for IFS

ÅUse of Marenostrum for BSC applications (K-means and
Tiramisu)

2. Measurements on the NEXTGenIO platform
without NVRAM.

3. Measurements on the NEXTGenIO platform
with NVRAM.

32

Summary

ÅByte-Addressable Persistent Memory is here
ÅPrice and capacity remains to be seen, but initial

indications are interesting (large, cheaper than DRAM
on a per GB)

ÅIn-node persistent storage likely to come to (maybe
some) HPC and HPDA systems shortly

ÅApplications can program directly buté.

Åépotentially systemware can handle functionality for
applications, at least in transition period

ÅInteresting times
ÅConvergence of HPC and HPDA (maybe)

ÅDifferent data usage/memory access models may
become more interesting

ÅCertainly benefits for single usage machines, i.e.
bioinformatics, weather and climate, etcé

Further reading

Åhttp://www.nextgenio.eu

ÅArchitectures for High Performance Computing
and Data Systems using Byte-Addressable
Persistent Memory
http://arxiv.org/abs/1805.10041

ÅThe project will have a system (~30 nodes)
with this memory in it in early 2019
ÅGet in touch if youôre interested in access

http://www.nextgenio.eu/
http://arxiv.org/abs/1805.10041

EOF

Thanks for your attention!

Any questions?

Dr Juan F. R. Herrera

Applications Developer

EPCC ïThe University of Edinburgh

j.herrera [at] epcc.ed.ac.uk

The NEXTGenIO project received funding from the EU Horizon 2020 research and innovation programme under grant agreement No 671591.

35

