
RIKEN Center for Computational Science

Computer simulations create the future

1

Yuichi Tsujita1, Yoshitaka Furutani2, Hajime Hida3,

Keiji Yamamoto1, Atsuya Uno1, Fumichika Sueyasu2

I/O Interference Alleviation on Parallel File Systems

Using Server-Side QoS-Based Load-Balancing

1 RIKEN Center for Computational Science

2 FUJITSU LIMITED

3 FUJITSU SOCIAL SCIENCE LABORATORY LIMITED

Jun. 28, 2018@HPC-IODC’18

Outline

2

• Research Background

• K computer and Its Filesystems

• QoS Management for Load-Balancing

• Performance Evaluation

• Related Work

• Summary

Research Background & Motivation

3

• High MDS load or very slow MDS response in a huge scale of parallel
file systems at the K computer lead to performance degradation in

– local I/O by compute nodes

– data staging, and so forth

• How can we alleviate high MDS load / slow MDS response for
further performance improvements?

• Knowing the root-causes of such high MDS load / slow MDS
response

• Adopting QoS control for an MDS, which is available on the parallel
file systems at the K computer

Ineffective operation

Effective operation

System Configuration of the K computer

4

Node
CPU×1
ICC×1
memory

128GFLOPS
16GiB

System Board(SB)
Node×4

512GFLOPS
64GiB

Compute Rack
SB×24
IOSB×6

12.3(13.1)TFLOPS
1.50(1.59)TiB

Full System
Compute Rack × 864

2 Cabinets
Compute Rack × 4
Disk Racks × 1

49.2(52.4)TFLOPS

6.00(6.38)TiB

10.6(11.3)PFLOPS
1.27(1.34)PiB

() included IO node performance and memory capacity.

500mm x 500mm

800mm x 800mm

4000mm x 800mm

40 m x 40 m

FEFS is used for both LFS and GFS.
(FEFS: Fujitsu Exabyte File System based on Lustre technology)

File Systems of the K computer

5

L-MDS

Global File System(GFS)

(>30PB)

Local File System(LFS)

(11PB)

 Control & Management Network

Frontend

Servers

Internet

I/O Nodes

The K computer

Compute Nodes

6D Mesh/Torus Network

Pre/Post

Server

Users

Global I/O Network

Management

Servers

Control

Servers

of CPU

Memory Capacity

82,944

1.27PiB

Stage-In Stage-Out

MDS for LFS

File System Configuration

• Organization of file systems at the K computer

– LFS : Performance oriented

• for high performance I/O during computation

– GFS : Capacity oriented

• for huge data storing and high redundancy

File system LFS GFS

Total volume size ~ 11 PB > 30 PB

volumes 1 8

OSSs 2,592 90

OSTs 5,184 2,880

Disk system of OST RAID5 RAID6

6

ext2 ext2 ext2 ext2

MDS

OSS

/work

/JobName.JobID

/0 /1 /2 /(n-1)

< Storage space at LFS >

Rank

#0

Rank

#1

Rank

#(n-1)

Rank

#2

Accesses to a shared directory

Accesses to a rank-directory

Shared dir.

Shared dir.

Rank dir.

Rank dir.

Loopback

mount

Shared directory

Rank

directory

Process

Meta-data

Meta-data

Object-data

Object-data

• Reducing MDS accesses leads to effective utilization of LFS.
• I/O accesses in rank-directories are free from slowdown of MDS performance.

Rank-Directory (Loopback File System) at the LFS

• Mitigation of I/O interference among processes

7

Data-Staging at the K computer

8

• Asynchronous data-staging

Stage-In
(Job A)

Stage-In
(Job B)

Job Execution
(Job A)

Job Execution
(Job B)

Stage-Out
(Job A)

Stage-Out
(Job B)

GIO, LIO

Compute Node

GFS->LFS GFS->LFS LFS->GFS LFS->GFS
Time

Overlaps between
job executions

and data-staging

 Stage-in phase includes rank-directory creation.

 High MDS load or quite slow MDS response may increase times for
rank-directory creation. An increase in times for stage-in phase

 Ineffective job scheduling

High MDS load (~ 23 hours)

High MDS Load/Slow MDS Response

9

• MDS Activities

Quite low
MDS load

MDS Request Queue Status

10

• High MDS load

• Slow MDS response

• Full in request queue
• Very slow operation

Interference due to MDS Problems

11

• High MDS load/Slow MDS response lead to

I/O performance degradation in local I/O at the LFS

Increase in times for data-staging, and so on.

• High MDS load
• Fully utilized service threads for dominant MDS heavy job accessing

a large number of files concurrently
• Quite slow MDS response

• Every service thread was blocked to wait responses from associated
OSSes.

QoS control for service threads at the MDS

Alleviation in I/O interference

QoS of FEFS(1)

12

• Requests in queue under QoS control

In-direct reference

req req req req

index,
etc.

index,
etc.

index,
etc.

index,
etc.

QoS: Group-A QoS: Group-B

req
ptlrpcd
request queue

ll_mdt_xxxx

Queue of job-1 Queue of job-2

QoS of FEFS (2)

13

• Load-balancing by QoS

I/O

FEFS

(MDS, OSS)

I/O

threads

threads

(%)BR

(%)AR

Group-A

Group-B

(GIO nodes : Compute nodes) = (:)
)(

100

BA

A

nn

n

)(

100

BA

B

nn

n

𝑛𝐴 = 𝑛𝑆 × (
𝑅𝐴

100
), 𝑛𝐵 = 𝑛𝑆 × (

𝑅𝐵

100
)

𝑛𝐴 = 𝑛𝑆 × (
𝑅𝐴
100

)

𝑛𝐵 = 𝑛𝑆 × (
𝑅𝐵
100

)

14

Performance Evaluation

• Stripe count impact in MDS performance
• QoS impact in fair-share execution among concurrent running jobs
• QoS impact in data-staging

MDTEST performance of L-MDS
• 2 sets (768 and 1,536 processes on 192 compute nodes) of MDTEST runs

• Command: ./mdtest -d ../md_dir –n 100 –i 3 –F –u

• Seven sets of stripe counts (Cs): 1, 2, 4, 8, 12, 24, and 48 (12 is default configuration.)
• Mean values and standard deviations from 6 iterations

Cs: stripe count

768 processes@4x6x8 (4 processes/node) 1,536 processes@4x6x8(8 processes/node)

15

 An increase in stripe count led to performance degradation, especially
in “File creation,” “File stat,” and “File removal.”

QoS for I/O Interference Alleviation

16

• QoS control at the MDS

– Managing service thread assignment for several groups,
such as local file I/O and data-staging

– Fair-share job execution in order to mitigate I/O
interference each other

Examination of Fair-Share Execution(1)

17

• I/O interference impact among two concurrent jobs (MDTEST runs)
– JOB-A(6,144 processes): ./mdtest -d ../work –n 100 –i 200 –F –u

– JOB-B(768 processes): ./mdtest -d ../work –n 100 –i 3 –F –u

Notation Executed jobs np Cs QoS rate Fair-share

reference JOB-B 768 4 None None

off JOB-A 6,144 96 71%
None

JOB-B 768 4

on JOB-A 6,144 96 71% JOB-A:JOB-B=50%:50%
(up to 90% each if available) JOB-B 768 4

29%
for others
(5 threads)

71% for file I/O (17 threads)

JOB-A
(np=6,144,

Cs=96)

JOB-B
(np=768,

Cs=4)

MDS

Fair-share: on(50%:50%)/off
GIO

• GIO group and compute node group
utilized up to 29% and 71% of 24 service
threads of the MDS.

• Fair-share function split available service
threads evenly among JOB-A and JOB-B.

• Performance measurements at JOB-B

Examination of Fair-Share Execution (2)

18

• MDTEST results

– Big performance degradation without fair-share control (“off”)

– Big interference mitigation under fair-share control (“on”)

• Although performance degradation was observed compared with the
“reference” case, improvement ratio relative to the “off” case was
bigger than minimization ratio relative to the “reference” case.

0

5000

10000

15000

20000

25000

30000

35000

File creation File stat File read File removal

O
P

S

reference off on

Examination of Fair-Share Execution(3)

19

• CPU utilization at the MDS
– Higher CPU utilization around 70% was realized under fair-share control.

• Similar CPU utilization compared to the “reference” case (~70%)

– Without fair-share control, CPU utilization was low (around 20%).

QoS Impact in Data-Staging (1)

20

• Evaluation of I/O Interference impact in data-staging

1. Submit a job for data-staging

2. Start-up of stage-in phase

3. Rank-directory creation at each rank on OSTs

4. Start-up of data transfer from GFS to LFS

5. End of stage-in phase

Picking up the most earliest time stamp to
start () and the most slowest time stamp
to end () for rank-directory creation

Figuring out time for rank-directory
creation:

𝑡𝑆
𝑡𝐸

𝑡𝑟𝑛𝑘_𝑑 = 𝑡𝐸 − 𝑡𝑆

QoS Impact in Data-Staging (2)

21

• Times for rank-directory creation in data-staging (stage-in phase)
– Cs=96

– Measurement of stage-in times under MDS high load due to an MDTEST run by
6,144 processes on the same number of compute nodes.

• QoS off: Rank-directory creation was not completed within 5 minutes.

• QoS on: Comparable in times for rank-directory creation of “Reference” case
without the MDTEST run

 QoS management has much impact in interference alleviation.

Related Work

22

• Performance optimization in Lustre:
– Many works have been addressing to tune parameters based on empirical

study or operation profiles.

• Monitoring tools played an important role for performance tuning.

– Lustre Monitoing Tools (LMT) (C. Morrone, LUG 2011)

• LMT reports server-side performance metrics such as CPU utilization, memory usage,
disk I/O bandwidth.

• However, it does not provide detailed I/O information such as file system statistics.

• Load-balancing or contention-aware optimizations

– QoS setup on PVFS2 using machine learning (Zhang et al., SC’11)

– Dynamic I/O congestion control at Lustre (Qian et al., MSST’13)

– Token bucket filter in NRS (Qian et al., SC’17)

• Does not guarantee free service threads

• QoS at FEFS guarantees free service threads by limiting the number of threads to
each pre-assigned group (client IP-address based or user-ID based) for fair-share
utilization. Suitable for operation of a huge scale of file systems

Summary

23

• We have investigated root-causes of (1) high MDS load and (2) quite slow
MDS response at the K computer.

– High MDS load was due to a large number of concurrent file accesses.

– Quite slow MDS response was caused by a large number of concurrent
file accesses under a large stripe count.
• Large stripe count configuration caused congestion on associated OSSes.

• Service threads at an MDS were unable to proceed new requests due to slow
response from associated OSSes.

• QoS control at the MDS has been introduced to mitigate such MDS
performance degradation.

– I/O interference among user jobs has been mitigated under fair-share
service thread allocation for each job.

– Minimization in times for rank-directory creation has been achieved
even if an another job which caused high MDS load was running at the
same time.

– QoS management performed very high impact in I/O interference
alleviation.

