

Analyzing the I/O scalability of a parallel Particle-in-Cell code

Sandra Mendez, Nicolay Hammer, Anupam Karmakar

Email: sandra.mendez@lrz.de

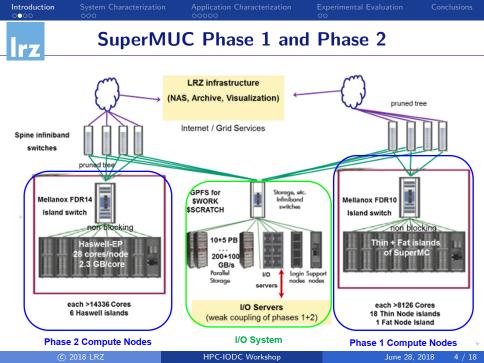
Outline

Introduction

- 2 System Characterization
- 3 Application Characterization
- 4 Experimental Evaluation

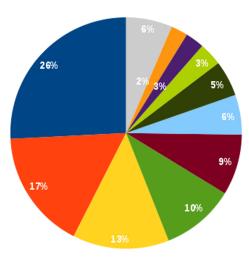
Introduction	System Characterization	Application Characterization	Experimental Evaluation	Conclusions
		Introduction		

Introduction


Member of the Gauss Centre for Supercomputing (GCS). Tier-0 centre for PRACE, the Partnership for Advanced Computing in Europe. 2012 SuperMUC Phase 1 and 2015 SuperMUC Phase 2. Total Peak Performance 6.4 PFlop/s.

) 2018 LRZ

r 7


HPC-IODC Workshop

Projects by Research Area

- Computational-Fluid-Dynamics (CFD)
- Astrophysics-Cosmology (APH)
- Informatics-ComputerSciences (INF)
- Chemistry (CHE)
- Biophysics-Biology-Bioinformatics (BIO)
- Physics-High-EnergyPhysics (HEP)
- Physics-Solid-State (FKP)
- Geophysics (GEO)
- Engineering-others (ENG)
- Meteorology-Climatology-Oceanography (CLI)

Other

A B A B A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

© 2018 LRZ

HPC-IODC Workshop

June 28, 2018 5 / 18

Expert Support for Specific Domain

Application Labs

- Astrophysics and Plasma Physics (AstroLab)
- Biology and Life Sciences (BioLab)
- Computational Fluid Dynamics (CFDLab)
- Geosciences (GeoLab)

${\rm I/O}\ {\rm Support}$

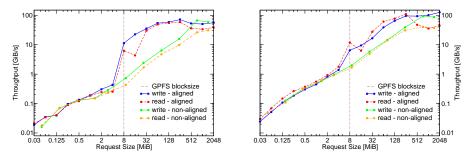
Ticket system provides support for technical problems with I/O implementations in scientific applications.

The Application Labs offer project based high level support for tuning, optimization and refactoring I/O implementations for user applications.

< □ ト < 同 ト < 三 ト < 三

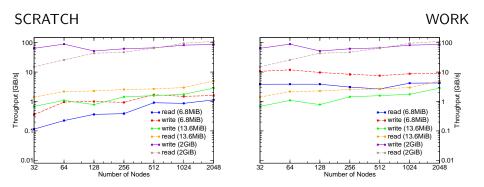
Application Characterization

Experimental Evaluation


Technical Description

Compute System	Description		
Number of nodes	9216		
Nodes per Island	512		
Sockets per Node	2		
Cores per Node	16		
Memory per node (GByte)	32 (Usable 26)		
Communication Network	FDR10 IB		
Intra-Island topology	non-blocking tree		
Inter-Island topology	pruned tree 4:1		
I/O System	WORK	SCRATCH	
Parallel Filesystem	IBM Spectrum Scale		
Network Shared Disk (NSD)	80 (DDN based)	16 (GSS based)	
Stripe/Block Size	8MiB	8MiB	
Filesystem Capacity	12 PiB	5.2 PiB	
Max. I/O Performance			
Write(GiB/sec)	pprox 180	pprox 130	
Read(GiB/sec)	pprox 200	pprox 150	
Compute Node	pprox 4.5 GiB/sec		
	4		

© 2018 LRZ


SCRATCH

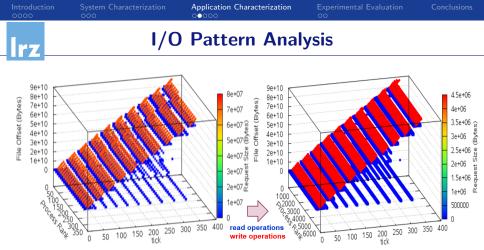
WORK

The benchmark was executed on 512 compute nodes of the SuperMUC Sandy Bridge system with 1 MPI task per node. There are two cases shown, one (blue/red) for aligned requests and a second one (yellow/green) for non-aligned.

© 2018 LRZ

The benchmark was executed on SuperMUC Sandybridge system partion with 2 MPI task per node. The plot shows the write and read performance for a request size of 6.8 MiB (blue/red), 13.6 MiB (green/yellow) and 2 GiB (purple/brown) per task.

© 2018 LRZ


A particle-in-cell code

General characteristics of PiC codes:

- Domain decomposition
- Ghost cells
- Nearest neighbor communication
- Good scaling is expected

ACRONYM is well-tested and used on several different supercomputers with the HDF5 library providing output in the form of self-describing files. Specific objective for ACRONYM:

- Optimize the output for maximum throughput on SuperMUC.
- Through comprehensive testing, we expect to determine the optimum number of output nodes.
- With IO being a major bottleneck for large scientific simulations this work will benefit other HPC projects, as well.

Global I/O pattern of the Acronym's I/O Kernel at MPI-IO level using 320 (left) and 5120 (right) MPI processes. *x*-axis corresponds to the MPI rank, *y*-axis represents calls to MPI-IO operations and *z*-axis represents the offset in the file for each MPI process. A heat map depicts the request size of each I/O operation.

© 2018 LR2

Introduction

_

ystem Characterization

Application Characterization

Experimental Evaluation

・ロト ・回ト ・回ト

Conclusions

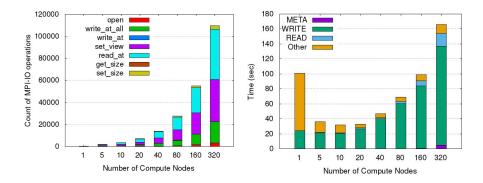
Application parameters and I/O pattern

I/O Parameter	Values		
Global Simulation Size	(x, y, z)		
Local Simulation Size	$(x_loc = x, y_loc = y, z_loc = \frac{z}{np})$		
Compute Nodes	cn		
Simulation step	st		
fields	fi		
writer processes	wp = cn		
Data Size (Bytes)	ds		
RequestSize(Bytes)	$rs = x_loc \times y_loc \times z_loc \times ds$		
FileSize(Bytes)	$\mathit{fz} = \mathit{cn} \times \mathit{rs} \times \mathit{st} \times \mathit{fi}$		
Data per <i>st</i> (Bytes)	$D_{st} = cn \times rs \times fi$		
Data per 1 <i>cn</i> per <i>st</i> (Bytes)	$D_{cnxst} = rs imes fi$		
I/O Operation	Count		
MPI_File_open	$st \times cn$		
MPI_File_write_at_all	st imes fi imes cn		
MPI_File_write_at	$(fi+1) \times st$		
MPI_File_set_view	$st \times fi \times cn \times 2$		
MPI_File_read_at	$2 \times fi \times st \times cn + 23 \times cn$		
MPI_File_get_size	st		
MPI_File_set_size	st imes cn		
MPI_File_close	st imes cn		

© 2018 LRZ

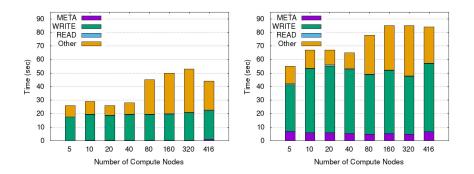
June 28, 2018 12 / 18

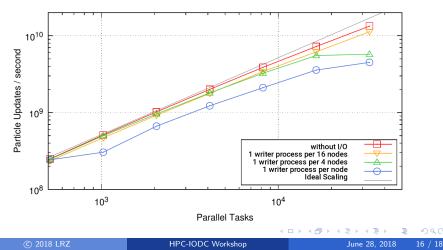
∋) B


Global simulation size in cells, with 52 cells along the x- and y-direction and 66560 cells along the z-direction (52, 52, 66560); 10 simulation steps (st) and 6 fields (fi). The size of data (ds) is 128 Bytes. By using these values we determine the rs and D_{cnxst} (Data per compute node per simulation step).

сп	Number of	Local Simulation	Request Size	Data per 1 <i>cn</i> per <i>st</i>
or writer	Processes (np)	Size	<i>rs</i> (MiB)	D _{cnxst} (MiB)
1	16	(52,52,4160)	1373.13	8238.75
5	80	(52,52,832)	274.63	1647.75
10	160	(52,52,416)	137.31	823.88
20	320	(52,52,208)	68.66	411.94
40	640	(52,52,104)	34.33	205.97
80	1280	(52,52,52)	17.16	102.98
160	2560	(52,52,26)	8.58	51.49
320	5120	(52,52,13)	4.29	25.75

Count of I/O Operations


I/O Time per Operation Type


Normal I/O Aggregation

 $\rm I/O$ Aggregation and Chunking

Weak scaling of the $\rm ACRONYM$ PiC-Code with and without I/O by using the optimized I/O implementation (plot provided by $\rm ACRONYM$ developer team)

- Selection of request size taking into account the simulation parameters and the I/O pattern.
- Characterization of the I/O system to explain the behavior of the original I/O implementation of ACRONYM. It can provide guidelines for other users of SuperMUC encountering problems with I/O scalability.
- A small number of computational ranks act as designated I/O agents that provides much better scaling even for simulations up to 32k cores. Results showed total time 4.5x faster than the original version for the best case.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで