
S a n d ia N a t io n a l L a b o r a t o r ie s i s a m u l t im i s s i o n

la b o r a t o r y m a n a g e d a n d o p e r a t e d b y N a t io n a l

T e c h n o lo g y & E n g in e e r in g S o lu t i o n s o f S a n d ia ,
L L C , a w h o l ly o w n e d s u b s id ia r y o f H o n e y w e l l

In t e r n a t io n a l In c . , f o r t h e U . S . D e p a r t m e n t o f

E n e r g y ’ s N a t io n a l N u c le a r S e c u r i t y

A d m in i s t r a t i o n u n d e r c o n t r a c t D E - N A 0 0 0 3 5 2 5 .

S A N D 2 0 1 7 - 1 2 4 5 9 C , 2 0 1 8 - 5 1 9 2 C , 2 0 1 8 - 1 0 9 6 P E

Addressing data center storage
diversity in HPC applications
using Faodel

C r a i g U l m e r, S h y a m a l i M u k h e r j e e , G a r y Te m p l e t
S c o t t L e v y, J a y L o f s t e a d , P a t r i c k W i d e n e r
To d d K o r d e n b r o c k
p a t r i c k .w i d e n e r @ s a n d i a . g o v

S a n d i a N a t i o n a l L a b o r a t o r i e s
A l b u q u e r q u e N M / L i v e r m o r e C A

Deep Memory/Storage Hierarchy

CPU

Archival Storage

Campaign Storage

Parallel File System

Nonvolatile Memory

Remote DRAM

DRAM

HBM

CPU Vendors

Storage Vendors

Data Management
Services

0.5-10 ns

100 ns

1,000 ns

30,000 ns

>1,000,000 ns

100 ns

HPC applications face evolving data management needs2

•Much of Sandia National Laboratories HPC is large-scale simulation of physical systems
• Climate modeling, combustion, materials engineering, stockpile assurance

• Data center storage will be a focal point for application evolution
• Simulate / output / analyze cycle
• Integration point has traditionally been the storage system
• Scale-up, scale-out on same platform

• Changes aren’t permanent, but change is
• Impedance mismatches between data capture /

production vs. storage
• Applications want flexible and resilient data storage,

but want complexity hidden
• Storage hierarchies growing deeper and more complex
• Barriers to integration with analytics / viz / other

downstream processing (file formats, storage locations)
• Support for workflows and portable analytics

(potentially on same platform)

Need for Data Management Services at Exascale4

Asynchronous Many-TaskTraditional HPC

Bootstrapping AMT

Meshing

Viz

Code Coupling

Simulation B

Simulation A

Workflows

SAW: NextGen
Workflows

DAG, I/O

• File Read/Write

• Checkpoints

Staging

= Data Management Service

Currently we lack a single good way to implement these capabilities

What should a data management service look like?6

• Requirements

– Job-to-Job Communication

– Coexist with MPI and AMT

– Asynchronous and Event-Driven

– Support Sandia’s APIs and Platforms

– Modern C++ primitives (lambdas, futures)Modern C++ primitives (Lambdas, Futures)

Domain Examples Issues

AMT
Frameworks

Charm++, Legion,
Uintah

Lack job-to-job
Framework lock-in

RDMA
Libraries

GASnet, Mercury,
Nessie, libfabric, UCX,
Converse…

Too low-level
Only target Client/Server

Code
Coupling DataSpaces

Focused on staging
Good, but need more
capabilities

Existing software for data management services?

Data Caching Job

ISAV Jobs

BSP MPI Job

AMT Runtime

AMT Job

Platform
Resource
Manager

Job

Faodel

Faodel Architecture

Faodel Component Structure8

Application

Local Cache

RDMA Portability

Pool

Pool

Network
MMU

REST
Unit

I/O
Drivers

Network State Machines

Kelpie

Lunasa I/O

Particle
API

Mesh
API

OpBox

Data Interface Modules (DIMs)
• No single API for all datasets

• Develop new modules for each

dataset

• Top: Implement familiar user API

• Bottom: Faodel calls

Faodel Component Structure9

Application

Local Cache

RDMA Portability

Pool

Pool

REST
Unit

I/O
Drivers

Network State Machines

Kelpie

I/ONetwork
MMU

Particle
API

Mesh
API

OpBox

Lunasa: Network Memory Management
• Network memory requires registration

• Registration can be expensive

• Suballocate memory with tcmalloc

Faodel Component Structure10

RDMA Portability

Network State Machines
OpBox

Application

Local Cache

REST
Unit

I/O
DriversI/O

Pool

Pool

Network
MMU

Particle
API

Mesh
API

Kelpie: Distributed Key/Blob Service
• User-controlled Local Cache

• Leave callbacks for objects

• “Pool” controls object distribution

Distributed
Hash Table

Compute Node

Pool 1

Persistent Distributed
Hash Table

Local
Cache Pool N

Faodel Component Structure11

Application

Local Cache

RDMA Portability

REST
Unit

I/O
Drivers

Pool

Pool

Network
MMU I/O

Particle
API

Mesh
API

OpBox: Network State Machines
• RPCs insufficient
• Implement transfers in state machines
• More clarity, better error handling

• OpBox manages progress via Ops

= OpNetwork
State Machines

Faodel Component Structure12

Local Cache

Application

RDMA Portability

REST
Unit

I/O
Drivers

Pool

Pool

Network
MMU I/O

Particle
API

Mesh
API

RDMA Portability
• Low-level network transfers

• Support NNTI or libfabric

Network
State Machines

Faodel Component Structure13

Local Cache

RDMA Portability

Network
State Machines

Application

REST
Unit

I/O
Drivers

Pool

Pool

Network
MMU

Particle
API

Mesh
API

I/O Drivers
• Interface to Burst Buffers, NVMe, PFS
• Currently use libHIO from LANL
• Support for XC40 DataWarp and PFS

Faodel Use Cases

Faodel Use Case: Kelpie Producer / Consumer Example16

void
produce(const size_t ds, const size_t item_count)
{
dht = kelpie::Connect(url);

for(const size_t i = 0; i < item_count; i++) {

kelpie::Key k;

k.K1(std::to_string(mpi_rank));
k.K2(std::to_string(i));

lunasa::DataObject ldo (0, ds);

dht.Publish(k, ldo);
}

}

void
consume(const size_t ds, const size_t item_count)
{
dht = kelpie::Connect(url);

for(const size_t j = 0; j < item_count; j++) {

kelpie::Key k;

k.K1(std::to_string(mpi_rank));
k.K2(std::to_string(j));

lunasa::DataObject ldo1;

dht.Need(k, &ldo1);
}

}

URL-based naming scheme for
resource groups (for example,
processes implementing a DHT)

Fine-grain control over keys and
therefore hashing performance

Event-based API
Publish, Want, Need

Faodel Use Case: I/O Modules for Checkpoint – Restart19

• Adding checkpoint/restart capabilities to an existing aerosciences CFD simulation
code
• Inputs are structured and unstructured meshes

• Primary restart use case is to ”bridge” long-running problems across job allocations

Simulation

Exodus

Checkpoint
/Restart Faodel

HIO
IOM

DataWarp

PFS

CGNS
Mesh

Checkpoint/Restart

Faodel Use Case: I/O Modules for Checkpoint – Restart20

Simulation

Exodus

Checkpoint
/Restart Faodel

HIO
IOM

DataWarp

PFS

CGNS
Mesh

Checkpoint/Restart

• Mesh description handled by existing file / container formats
• Exodus (NetCDF) and CGNS historically popular

• Tied to file system
• Complicated API, interdependent metadata updates

during I/O
• Frequently the mesh structure doesn’t represent the problem

(which is what needs to be memo-ized)

Faodel Use Case: I/O Modules for Checkpoint – Restart21

Simulation

Exodus

Checkpoint
/Restart Faodel

HIO
IOM

DataWarp

PFS

CGNS
Mesh

Checkpoint/Restart

• Solution state is what must be checkpointed
• Often makes sense to represent independently of mesh

• Significant space savings possible
• Organize representation for specific cases – restart, viz,

analysis
• Many times only 1 or 2 checkpoints are necessary

• … as opposed to writing all to a filesystem-hosted library

Faodel Use Case: I/O Modules for Checkpoint – Restart22

Simulation

Exodus

Checkpoint
/Restart Faodel

HIO
IOM

DataWarp

PFS

CGNS
Mesh

Checkpoint/Restart

• Simulation chooses a set of keys to represent desired semantics
• Sometimes just arrays of state variables

• Values stored in LDOs allocated through Lunasa
• Kelpie stores LDOs in desired pool structure (e.g. DHT)
• LDO contents (the checkpoint) distributed among DHT nodes

Checkpoint contents have to end up on stable storage eventually

Faodel Use Case: I/O Modules for Checkpoint – Restart23

Simulation

Exodus

Checkpoint
/Restart Faodel

HIO
IOM

DataWarp

PFS

CGNS
Mesh

Checkpoint/Restart

• Application developers would like to use “burst-buffer” storage
• Fast I/O for checkpoint
• Background “trickle” to PFS
• Potentially, preferentially retain some data at burst-buffer

• Targets are new systems which will have some type of near-line
fast storage

• But they do not want to manage this process themselves if they
don’t have to

Faodel Use Case: I/O Modules for Checkpoint – Restart24

Simulation

Exodus

Checkpoint
/Restart Faodel

HIO
IOM

DataWarp

PFS

CGNS
Mesh

Checkpoint/Restart

• The role of the I/O Module
• Mediate between K/V structure and stable storage APIs
• Still need explicit interaction with job scheduler

• At intervals:

• Faodel supplies a set of keys to the IOM attached to each DHT node to be persisted
• IOM writes to stable storage as configured

• HIO library can write to either DataWarp (Cray burst-buffer) or PFS
• Also have an IOM that writes directly to DataWarp
• Performance is mixed - we continue to investigate causes

Faodel Use Case:
Data Interface Modules for Data Access Diversity25

§ PIC methods simulate EM fields using high-fidelity meshes, tracing particles as
they migrate

§ Particle motion causes imbalance in the mesh distribution across compute nodes
§ SimplePIC: asynchronous many-task reference implementation to explore load-

balancing tradeoffs
§ More particles àwider range of testing possibilities

SimplePIC: Particle-in-Cell (PIC) simulation

Simple
PIC

AMT RT

Charm++

PIC
DIM

PIC
DIM VTK

PIC
DIM Writer

Faodel

Faodel Use Case:
Data Interface Modules for Data Access Diversity26

SimplePIC: Particle-in-Cell (PIC) simulation

Simple
PIC

AMT RT

Charm++

PIC
DIM

PIC
DIM VTK

PIC
DIM Writer

Faodel

• Current simulations track 1 billion particles on 30M element mesh

• Data sizes

• 8 features per particle (~128 bytes)

• ~128 GB per timestep

• Normal timesteps perform sampling to minimize output

• Full checkpoints include all data + some extra features

Faodel Use Case:
Data Interface Modules for Data Access Diversity27

SimplePIC: Particle-in-Cell (PIC) simulation

Simple
PIC

AMT RT

Charm++

PIC
DIM

PIC
DIM VTK

PIC
DIM Writer

Faodel

• In situ analysis / visualization tools are necessary
• Summarize simulation conditions in ways meaningful to users
• Load balancing means tools need particle-access mechanism

• Typical ISAV tasks
• # of particles “close” to regions of interest
• # of particles exceeding threshold velocity
• Image rendering to monitor simulation modeling

• These actions aren’t well-supported by on-disk storage formats
• Hard to “split” common formats to take advantage of memory hierarchy
• Intrusive coding required for viz tasks

Faodel Use Case:
Data Interface Modules for Data Access Diversity28

SimplePIC: Particle-in-Cell (PIC) simulation

Simple
PIC

AMT RT

Charm++

PIC
DIM

PIC
DIM VTK

PIC
DIM Writer

Faodel

Faodel Particle Data Interface Module

• Faodel & Particle DIM serve both producers and consumers of PIC data

• A DIM is a data-exchange contract: what data is exchanged, not how

(multiple DIMs possible)

• Translates app data semantics into Faodel K-V pairs

• Migration, indexing and query support appropriate to the application and

available storage capabilities

Faodel Future Use Case:
Cooperating with Kokkos on Memory Management29

• Kokkos is a Sandia open-source library providing programming
abstractions which support performance portability

• Integrated mapping of thread parallel computations and N-d array data onto
manycore architectures

• Many Sandia applications have adopted Kokkos containers (“View”)

• Faodel manages user memory for network transfer using Lunasa LDOs

• Can we provide an expressive, performant way to map from View ßà LDO?
• Relatively complex integration with Kokkos memory management

• If successful, potential for reducing I/O cost in AMT applications that rely on
accelerators
• Also may be able to inform Kokkos on-node data layouts via Kelpie-hosted metadata

Conclusion30

• Faodel provides data management tools &
services for computational science applications

• Faodel is a promising integration point for
managing data in complex storage hierarchies
• … while providing applications with abstractions

• Our group is currently working on additional use
cases for evaluation purposes
• We care about performance and scalability
• We care more about uptake among users

• An alpha public release of Faodel is available:
https://github.com/faodel/faodel

Data Caching Job

ISAV Jobs

BSP MPI Job

AMT Runtime

AMT Job

Platform
Resource
Manager

Job

Faodel

S a n d i a N a t i o n a l L a b o r a t o r i e s i s a m u l t i m i s s i o n l a b o r a t o r y m a n a g e d
a n d o p e r a t e d b y N a t i o n a l Te c h n o l o g y a n d E n g i n e e r i n g S o l u t i o n s o f
S a n d i a L L C , a w h o l l y o w n e d s u b s i d i a r y o f H o n e y w e l l I n t e r n a t i o n a l
I n c . f o r t h e U. S . D e p a r t m e n t o f E n e r g y ’s N a t i o n a l N u c l e a r S e c u r i t y
A d m i n i s t r a t i o n u n d e r c o n t r a c t D E - N A 0 0 0 3 5 2 5 .

This research was supported by the Exascale Computing Project (17-SC-20-SC), a
joint project of the U.S. Department of Energy’s Office of Science and National
Nuclear Security Administration, responsible for delivering a capable exascale
ecosystem, including software, applications, and hardware technology, to support the
nation’s exascale computing initiative.

