Self-Optimized Strategy for IO Accelerator Parametrization

<u>Lionel Vincent</u>, Gaël Goret, Mamady Nabe, Trong Ton Pham **Bull - Atos Technologies**

28-06-2018

We are THE European IT Leader

and a top 5 Digital services player worldwide

This is our Mission within Atos

Big Data & HPC Business Unit

End-to End-offering to handle the most complex challenges

Software

HPCaaS/DLaaS

Data center

Expertise & services

BDS - HPC R&D - Data Management

Product Overview

Bull IO Pattern Analyzer

Automate accelerators parametrization

Bull IO Pattern Analyzer

Targeted User Feature

Run a job with the minimal execution time

Parametrization approaches

Bull IO Pattern Analyzer (IOPA)

Targeted User Feature

Run a job with the minimal execution time

⇒ Automatically find the optimal parametrization of the IO accelerators

Self-optimized parametrization method

Bull atos technologies

Inference The « equation »

Inference - Regression

From principle to application

Find a model which estimates the relationship :

- ⇒ accelerators parameters vs performance
- Different methods studied
 - Bayesian Ridge Regression (BRR)
 - Kernel Ridge Regression (KRR)

f(param) = perf

- Support Vector Machines for Regression (SVR)
- Gaussian Process Regression (GPR)

	All the dataset	RM	SE		
4					
3					
2	PR	R	K	R	
	U	∑_	S	B	
1	_				
0					

Methods	Prediction time*	Train time*
SVR	0,001 s	0,110 s
KRR	0,001 s	0,120 s
GPR	0,001 s	0,069 s

* Time measured to perform regression/prediction on 168 runs

Inference - Optimization

Gradient-free optimization methods

- Find the optimal solutions of the IO accelerator parameters (min execution time)
 - ⇒ Use heuristics to find « good » solutions in a reasonable time
- Gradient-free method
 - ⇒ Less sensitive to local minimum locking

Particle Swarm Optimization (PSO)

- Use collective behavior to model the problem
- They are described by a position and a velocity

Nelder-Mead (NM)

- A simplex inspired method
- Based on four main transformations

Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

Inference

Convergence validation : simulations

Inference

Perspectives

Chose the most relevant optimization algorithm
Setup a parametrization strategy for initialization

Thank you

Atos, the Atos logo, Atos Codex, Atos Consulting, Atos Worldgrid, Worldline, BlueKiwi, Bull, Canopy the Open Cloud Company, Unify, Yunano, Zero Email, Zero Email Certified and The Zero Email Company are registered trademarks of the Atos group. July 2016. © 2016 Atos. Confidential information owned by Atos, to be used by the recipient only. This document, or any part of it, may not be reproduced, copied, circulated and/or distributed nor quoted without prior written approval from Atos.

