
IO Workload Throttling 
on Supercomputers

11/12/18 1

Si Liu
Analyzing Parallel I/O

Nov 13, 2018



Lei Huang
huang@tacc.utexas.edu
Texas Advanced 
Computing Center

Team Members

11/12/18 2

Si Liu
siliu@tacc.utexas.edu
Texas Advanced 
Computing Center



Issues of Parallel Shared Filesystem

• Achilles' heel of HPC: filesystem is shared by all users on 
all nodes (even crossing multiple clusters). It is a weak 
point of modern HPC.

• Overloading metadata server results in global filesystem 
performance degradation and even unresponsiveness. 

• Many practical applications (in computational fluid 
dynamics, quantum chemistry, machine learning, etc.) 
raise a huge amount of IO requests in a very short time.

• There is no strict enforced IO resource provisioning in 
production (e.g. metadata sever throughput, bandwidth) 
on user level or node level.

11/12/18 3



Potential Solutions 
• System level

o A strong parallel filesystem that can handle any kind of IO requests 
from all users without losing efficiency, e.g., upgrade hardware of MDS 
to achieve better IO throughput
Ø Impractical, expensive or limited improvement

o Burst buffer 
Ø Needs extra hardware and software, even changes in user code

• Application level
o A well-designed workflow with reasonable IO workload

Ø Recommended way
Ø Expertise required 

• User level
o Users give up planned IO work to avoid heavy IO requests or decrease 

the number of jobs
Ø A compromise rather than a solution

11/12/18 4



Potential Solutions 
• System level

o A strong parallel filesystem that can handle any kind of IO requests 
from all users without losing efficiency, e.g., upgrade hardware of MDS 
to achieve better IO throughput
Ø Impractical, expensive or limited improvement

o Burst buffer 
Ø Needs extra hardware and software, even changes in user code

• Application level
o A well-designed workflow with reasonable IO workload

Ø Recommended way
Ø Expertise required 

• User level
o Users give up planned IO work to avoid heavy IO requests or decrease 

the number of jobs
Ø A compromise rather than a solution

o An optimal system that makes heavy IO work under control 
Ø Without rewriting users’code

11/12/18 5



Lustre Architecture (NICS website)
https://www.nics.tennessee.edu/computing-resources/file-systems/lustre-architecture

11/12/18 6

https://www.nics.tennessee.edu/computing-resources/file-systems/lustre-architecture


Lustre Architecture (NICS website)
https://www.nics.tennessee.edu/computing-resources/file-systems/lustre-architecture

11/12/18 7

https://www.nics.tennessee.edu/computing-resources/file-systems/lustre-architecture


Our Proposed User-side Solution

• Intercept IO related functions (open(), stat(), etc.) within 
applications and keep a record of
o IO operation time (response time)
o IO operation frequency (calculated from saved time 

stamp of recent function calls)
• Evaluate filesystem status (busy/modest used/free)

o Responding time per operation
• Evaluate IO workloads (recent IO request frequency)

o Node based and user based
• Insert proper delays when necessary

11/12/18 8



Optimal Overloaded IO Protection System
(OOOPS)

• An innovative IO workload managing system that 
optimally controls the IO workload from the users' side.

• Automatically detect and throttle excessive IO workload 
from supercomputer users to protect parallel shared 
filesystems.

11/12/18 9



write_data() {
FILE *fOut; 
fOut = fopen(name, mode);
…
}

User application

open(name, mode, …) {
…
}

glibc version of open()
defined in libc.so

write_data() {
FILE *fOut; 
fOut = fopen(name, mode); 
…
}

User application

open(name, mode, …) {
…
open(name, mode, …);
…
}

OOOPS version of open()
defined in ooops.so

Without OOOPS loaded

With OOOPS loaded (LD_PRELOAD OOOPS library)

open(name, mode, …){
…
}

glibc version of open()
defined in libc.so

Function Interception 

11/12/18 10



IO Requests with Different Settings

11/12/18 11



11/12/18 12

Example of Running OpenFOAM



11/12/18 13

Example of Running TensorFlow



Example of Dynamically Throttling IO 
Requests

11/12/18 14



OOOPS Highlights
• Convenient to HPC users

o No source code modification at all on uses’ side
o Little/no workflow update on users’ side
o Self-driven slowdown IO work when necessary

• Valuable on supercomputers
o Protect filesystem from overloaded IO requests
o Little overhead: minimal/slight influence on performance except 

some jobs performing excessive IO work
o Easy to deploy on an arbitrary cluster as long as file system is 

POSIX compliant
o Scale up to any size of supercomputers
o Little work for system administrators
o Dynamically control running jobs’ IO requests without interruption

11/12/18 15



Limitations

• The IO resource provisioning policy is too simple.

• OOOPS will lead to noticeable performance 
degradation for the jobs with very intensive IO for 
significant time.

11/12/18 16



Conclusion

• We developed a new tool (OOOPS) to help
ü users carry out heavy IO work that is originally not 

allowed
ü administrators protect the cluster from overload

• We enforce a fair-sharing IO resource provisioning policy 
on client side practically (instead of server side)
ü Treat IOPS/Metadata server throughput as a resource
ü Increase system capacity (applications with heavy IO 

load)

11/12/18 17



Acknowledgement

Colleagues at TACC
● Zhao Zhang ● Junseong Heo
● Tommy Minyard ● Robert McLay
● Bill Barth ● John Cazes
Stampede2 early users of OOOPS

Other HPC centers
● Davide Del Vento (NCAR)
● Kevin Manalo (JHU)

11/12/18 18


