The University of Texas at Austin

|O Workload Throttling
on Supercomputers

Si Liu
Analyzing Parallel 1/O
Nov 13, 2018

11/12/18 ‘ 1

Team Members

Lei Huang
huang@tacc.utexas.edu
Texas Advanced
Computing Center

Si Liu
siliu@tacc.utexas.edu
Texas Advanced
Computing Center

11/12/18

Issues of Parallel Shared Filesystem

* Achilles' heel of HPC: filesystem is shared by all users on
all nodes (even crossing multiple clusters). It is a weak
point of modern HPC.

* Overloading metadata server results in global filesystem
performance degradation and even unresponsiveness.

« Many practical applications (in computational fluid
dynamics, quantum chemistry, machine learning, etc.)
raise a huge amount of 10 requests in a very short time.

* There is no strict enforced IO resource provisioning in
production (e.g. metadata sever throughput, bandwidth)
on user level or node level.

Potential Solutions

« System level

o A strong parallel filesystem that can handle any kind of 10 requests
from all users without losing efficiency, e.g., upgrade hardware of MDS
to achieve better 10 throughput

» Impractical, expensive or limited improvement
o Burst buffer
> Needs extra hardware and software, even changes in user code

* Application level
o Awell-designed workflow with reasonable 10 workload
» Recommended way
» Expertise required

« User level

o Users give up planned 10 work to avoid heavy 10 requests or decrease
the number of jobs

» A compromise rather than a solution

Potential Solutions

« System level

o A strong parallel filesystem that can handle any kind of 1O requests
from all users without losing efficiency, e.g., upgrade hardware of MDS
to achieve better 10 throughput

» Impractical, expensive or limited improvement
o Burst buffer
> Needs extra hardware and software, even changes in user code

* Application level
o Awell-designed workflow with reasonable 10 workload
» Recommended way
» Expertise required

« User level

o Users give up planned 10 work to avoid heavy 10 requests or decrease
the number of jobs

» A compromise rather than a solution
o An optimal system that makes heavy IO work under control

»>_Without rewriting users’code (! *,

Lustre Clients Memory Network Lustre Servers Lustre Targets

Application processes RAM of Ethemnet or Metadata and Metadata and
running on compute compute nodes InfiniBand Object storage Object storage
nodes Servers Targets
' ' /
L EI = |
MDS

L]
= AN W -
L] A4 .

| P |

=:>:)

ol
1 :

0SSO0

|
i

‘
- . »

—3
=

or—
| =

0SS m-1

_—

s

[i
= MU NN =
- 1y »

Lustre Architecture (NICS website)
https://www.nics.tennessee.edu/computing-resources/file-systems/lustre-architecture

11/12/18 | 6

https://www.nics.tennessee.edu/computing-resources/file-systems/lustre-architecture

Lustre Clients Memory Network Lustre Servers Lustre Targets

Application processes RAM of Ethernet or Metadata and Metadata and
running on compute compute nodes InfiniBand Object storage Object storage
nodes Servers Targets
TR T MDT
: (===l
MDS

AN BEEE:
‘ [—
= i .

) —
= 0% mamy -
I —)
T (| — (255,
| _— ——

ol
I ‘

OSSm-1

NN R -

Lustre Architecture (NICS website)
https://www.nics.tennessee.edu/computing-resources/file-systems/lustre-architecture
11/12/18 | 7

https://www.nics.tennessee.edu/computing-resources/file-systems/lustre-architecture

Our Proposed User-side Solution

 Intercept 10 related functions (open(), stat(), etc.) within
applications and keep a record of

o |O operation time (response time)
o |O operation frequency (calculated from saved time
stamp of recent function calls)
« Evaluate filesystem status (busy/modest used/free)
o Responding time per operation

« Evaluate 10 workloads (recent IO request frequency)
o Node based and user based

 Insert proper delays when necessary

Optimal Overloaded 10 Protection System
(OOOPS)

* An innovative 10 workload managing system that
optimally controls the 1O workload from the users' side.

« Automatically detect and throttle excessive 10 workload
from supercomputer users to protect parallel shared
filesystems.

TACC |

11/12/18 ‘ 9

Function Interception

Without OOOPS loaded

write_data() {

FILE *fOut; open(name, mode, ...) {
fOut = fopen(name, mode); —>1 ...

}

}

glibc version of open()

User application defined in libc.so

With OOOPS loaded (LD_PRELOAD OOOPS library)

write_data() { open(name, mode, ...) {
FILE *fOut; open(name, mode, ...){
IfOut = fopen(name, mode); I —>| open(name, mode, ...); 21 ..
}
} }
User application OOOPS version of open() glibc version of open()
defined in ooops.so defined in libc.so

11/12/18 10

TACC |

|O Requests with Different Settings

| ! | ! | ! | ! |

60000 -
- — without limit
S OOOPS, high
3 45000 - —— OOOPS, medium | -
N
— OOOPS, low
N
S 30000 -
D) AN
S 15000 Lot]
O _ _

O I . I . I . 1 . 1
0 800 1600 2400 3200

time (s)

Example of Running OpenFOAM

60000

45000

15000

1O operations / second
()
S
S
S
-

i

|

| |

—— without limit

OOOPS, high

L

0

300

600
time (s)

900 1200

11/12/18

12

Example of Running TensorFlow

60000

45000

15000

10 operations / second
()
-
-
-
-

-

—— without OOOPS
with OOOPS

0

200

400 600 800 1000

time (s)

Example of Dynamically Throttling IO
Requests

= 48000 | M
Qo
D) I
2
236000 | L
T
224000 /\w
= i
Yo
= _
Q,
S 12000 | NS -
O \NAWM\W\'\ |
|
O — 1 . I . | . I . I =
0 300 600 900 1200

time (s)

11/12/18 14

OOOPS Highlights

« Convenient to HPC users
o No source code modification at all on uses’ side
o Little/no workflow update on users’ side
o Self-driven slowdown IO work when necessary

« Valuable on supercomputers
o Protect filesystem from overloaded IO requests

o Little overhead: minimal/slight influence on performance except
some jobs performing excessive 10 work

o Easy to deploy on an arbitrary cluster as long as file system is
POSIX compliant

o Scale up to any size of supercomputers
Little work for system administrators
o Dynamically control running jobs’ IO requests without interruption

Limitations

* The 1O resource provisioning policy is too simple.

« OOOPS will lead to noticeable performance
degradation for the jobs with very intensive |O for
significant time.

Conclusion

* We developed a new tool (OOOPS) to help

v" users carry out heavy IO work that is originally not
allowed

v administrators protect the cluster from overload

« We enforce a fair-sharing 10 resource provisioning policy
on client side practically (instead of server side)

v Treat IOPS/Metadata server throughput as a resource

v" Increase system capacity (applications with heavy 10
load)

Acknowledgement

Colleagues at TACC

e Zhao Zhang e Junseong Heo
e Tommy Minyard e Robert McLay
e Bill Barth e John Cazes

Stampede?2 early users of OOOPS

Other HPC centers

e Davide Del Vento (NCAR)
e Kevin Manalo (JHU)

