
In-memory	analy,cs	workflows	
on	large	scale	climate	datasets	

Eng. Alessandro D’Anca
Dr. Sandro Fiore and Prof. Giovanni Aloisio
CMCC Foundation
Advanced Scientific Computing Division

on behalf of the Ophidia Team

Understanding I/O Performance Behavior
UIOP Workshop

March 22nd
DKRZ, Hamburg, Germany

•  Analytics requirements and needs in the climate context

•  Ophidia
–  Architecture v1.0

•  Primitives

•  Data and metadata operators

–  Architecture v2.0
•  In memory analysis

•  Workflow support

•  Climate indicator processing examples

•  Useful link & documentation
–  Website, github, youtube, pypi, …

Outline	

Requirements and needs focus on:
v  Time series analysis
v  Data subsetting
v Model intercomparison
v Multimodel means
v Massive data reduction
v  Data transformation (through array-based primitives)
v  Param. Sweep experiments (same task applied on a set of data)
v Maps generation
v  Ensemble analysis
v  Data analytics workflow support
But also…
v  Performance
v  re-usability
v  extensibility

Data analytics requirements and use cases

The Ophidia project

Ophidia (http://ophidia.cmcc.it) is a CMCC Foundation research
project addressing big data challenges for eScience

It provides support for declarative, parallel, server-side data
analysis exploiting parallel computing techniques and database
approaches

Exploits a multidimensional data model providing the data cube
abstraction for access and analysis of scientific n-dimensional data

Ophidia in a nutshell
�  Big data stack for scientific data analysis

�  Features: time series analysis (array-based analysis), data subsetting (by

value/index), data aggregation, model intercomparison, OLAP, etc.

�  Use of parallel operators and parallel I/O

�  Support for complex workflows / operational chains

�  Extensible: simple API to support framework extensions like new operators

and array-based primitives
�  currently 50+ operators and 70+ primitives provided

�  Multiple interfaces available (WS-I, GSI/VOMS, OGC-WPS).

�  Programmatic access via C and Python APIs

�  Support for both batch & interactive data analysis

�  Command line interpreter for submitting operators.

Ophidia original architecture
Multi-interface server
front-end & job/
workflow management

Analytics framework
for the execution of
parallel MPI-based
(data cube) operators

Multiple I/O servers
(MySQL) run array-
based primitives
(UDF) on data

Distributed hardware
resources to manage
data storage

OphidiaDB maps data
fragmentation and
tracks metadata

I/O$nodes

Data$Store Data$Store Data$StoreOphidiaDB Data$Store Data$Store Data$Store

IO
Service

UDF$Plugin

IO
Service

UDF$Plugin

IO
Service

UDF$Plugin

IO
Service

UDF$Plugin

IO
Service

UDF$Plugin

IO
Service

UDF$Plugin

Compute$&$IO$Hosts

OPHIDIA$Server

I/Onode$m

Compute$nodes

Compute$node$1 Compute$node$2 Compute$
node$n

Storage

I/O$node$1 I/O$node$2

•  Ophidia provides a wide set of array-based primitives to perform data
summarization, sub-setting, predicates evaluation, statistical analysis, compression,
etc.

•  Primitives come as plugins and are applied on a single datacube chunk (fragment)

•  Primitives can be nested to get more complex functionalities

•  Compression is a primitive too!

•  New primitives can be easily integrated as additional plugins

Array based primitives (about 70)	

 OPERATOR NAME OPERATOR DESCRIPTION
Operators “Data processing” – Domain-agnostic

OPH_APPLY(datacube_in,
datacube_out,

array_based_primitive)

Creates the datacube_out by applying
the array-based primitive to the

datacube_in
OPH_DUPLICATE(datacube_

in, datacube_out)
Creates a copy of the datacube_in in

the datacube_out
OPH_SUBSET(datacube_in,
subset_string, datacube_out)

Creates the datacube_out by doing a
sub-setting of the datacube_in by

applying the subset_string
OPH_MERGE(datacube_in,
merge_param, datacube_out)

Creates the datacube_out by merging
groups of merge_param fragments

from datacube_in
OPH_SPLIT(datacube_in,
split_param, datacube_out)

Creates the datacube_out by splitting
into groups of split_param fragments

each fragment of the datacube_in
OPH_INTERCOMPARISON
(datacube_in1, datacube_in2,

datacube_out)

Creates the datacube_out which is the
element-wise difference between
datacube_in1 and datacube_in2

OPH_DELETE(datacube_in) Removes the datacube_in

 OPERATOR NAME OPERATOR DESCRIPTION
Operators “Data processing” – Domain-oriented

OPH_EXPORT_NC
(datacube_in, file_out)

Exports the datacube_in data into the
file_out NetCDF file.

OPH_IMPORT_NC
(file_in, datacube_out)

Imports the data stored into the file_in
NetCDF file into the new datacube_in

datacube
Operators “Data access”

OPH_INSPECT_FRAG
(datacube_in, fragment_in)

Inspects the data stored in the
fragment_in from the datacube_in

OPH_PUBLISH(datacube_in) Publishes the datacube_in fragments
into HTML pages

Operators “Metadata”
OPH_CUBE_ELEMENTS

(datacube_in)
Provides the total number of the

elements in the datacube_in
OPH_CUBE_SIZE

(datacube_in)
Provides the disk space occupied by the

datacube_in
OPH_LIST(void) Provides the list of available datacubes.

OPH_CUBEIO(datacube_in) Provides the provenance information
related to the datacube_in

OPH_FIND(search_param) Provides the list of datacubes matching
the search_param criteria

Metadata management

Data processing	

Data Access

Datacube abstraction and operators (about 50)

Import/Export

The analytics framework: “data” operators

The analytics framework: “metadata” operators

Provenance management (PID-based)	

Ophidia architecture extensions

The architecture has evolved in order to enhance performances
and scalability and achieve decoupling from the underlying storage.

•  enhance performance executing analytic tasks in-memory

•  decouple the analytical framework from the storage
features via unique API

•  supports different types of I/O server

•  interoperability with different types of storage systems

Compute(node(1

OphidiaDB

I/O(node(1

MySQL
Server

Array(plugin((UDF)

I/O(node(n

I/O(Nodes(

Compute(nodes

Ophidia(Framework

Operator Operator Operator

Ophidia(Operators

Compute(node(m

Execute(Plugin

Ophidia/I/O/Server
Storage(API

In
memory

File
system

…

DataBase(
Storage

Memory(
Storage

File(System(
Storage

MySQL(Engine

MySQL
Connector

Ophidia(Server
Connector

DataBase(
Storage

Memory(
Storage

File(System(
Storage

MySQL
Server

Array(plugin((UDF)

Execute(Plugin

Ophidia'I/O'Server
Storage(API

In
memory

File
system

…MySQL(Engine

I/O(Server(API

Storage

Ophidia(Server

Ophidia(Framework

Operator Operator Operator

Ophidia(Operators

MySQL
Connector

Ophidia(Server
Connector

I/O(Server(API

Ophidia architecture v2.0

Higher degree of
decoupling among
framework and I/O
components

Support different I/O
servers

Native I/O server
with parallel
execution engine

Multiple storage
systems supported

Ophidia I/O server: requirements

The I/O server provides a native solution for the scientific domain
applications. The requirements for the Ophidia I/O server are:

•  run data analytics tasks in-memory taking advantage of the
lower latency

•  binary array-oriented engine to efficiently process scientific
multidimensional data

•  interact directly with the storage layer to exploit data locality
•  exploit parallelism at the array-level
•  NoSQL approach based on a key-value store, providing a

declarative query language (SQL-like)
•  guarantee extensibility and interoperability of the I/O server to

support multiple storage back-ends

WOS Integration in Ophidia (I)

�  WOS semantics have been simplified to PUT, GET, and DELETE.

�  The C++ API provides the following functionality available in both blocking

and non-blocking forms:
•  Connect to cluster
•  Create WOS object
•  Put, Get, Delete object
•  Reserve and PutOID
•  Streaming

Ophidia	
framework	

WOS	
library	

GAP	on	code	
language	and	API	

interface	

C	code	 C++	
code	

Web Object Scaler

	

WOS Integration in Ophidia (II) 	

Ophidia	
framework	

WOS	
library	Wrapper	IO	Server	API	

WOS	

C	code	 C++	code	C/C++	code	C	code	

FUNCTION	NAME	 INPUT	

Connect	 oph_iostore_handler	*handle	

Get	 oph_iostore_handler	*	handle,	oph_iostore_resource_id	*res_id,	
oph_iostore_frag_record_set	**frag_record	

Put	 oph_iostore_handler	*	handle,	oph_ioserver_frag_record_set	*frag_record,	
oph_iostore_resource_id	**res_id	

Delete	 oph_iostore_handler*	handle,	oph_iostore_resource_id	*res_id	

� First step: define a Wrapper to connect C++ API to C functions

� Second step: implementation of Ophidia IO Server API for WOS

The Ophidia Server	

The	workflow	run>me	engine	is	the	
core	component	of	the	Ophidia	
Server:		
•  it	formats	the	commands	for	the	

analy>cs	framework;	
•  submits	the	tasks	to	the	resource	

manager;	
•  checks	for	task	status	updates	in	

the	run>me	environment	and	
•  provides	the	proper	response	

messages.		

Workflow JSON representation	

Workflow submission	

Climate indicators processing (I)

!

�  In the CLIPC project, processing chains for data analysis
are being implemented with Ophidia to compute climate
indicators

�  Parallel approach
ü  Inter-parallelism: Multiple branches are executed in

parallel
ü  Intra-parallelism: data analysis operators have been

parallelized too (e.g. MPI)
�  First set of indicators includes: TNn, TNx, TXn, TXx

�  Input files: 12GBs (TasMin & TasMax)

Climate indicators processing (II)
SST mean, anomaly, climatology mean

�  Dataset time range: 1991-2010
�  7062 nc files
�  350GB of input data
�  87 tasks performed
�  12x51MB + 2x12GB of output files

!

Snow on/off – Length of snow season

�  Dataset time range: 1979-2012
�  6341 nc files
�  50 GB of input data
�  599 tasks performed
�  99 NetCDF output files (6MB each)
�  21 tasks in the exp. description

Climate indicators processing (III)

CMCC produced indicators
have been deployed in the

CLIP-C platform

!

Workflows in Ophidia

COSMO-ME

SSR
(3h) SUBSETTING

[lat, lon]

(Apulia & Greece)

EXPORT
Meteo
Maps

Solar Radiation (SSR) every 3 hours for 3 days

IMPORT
(before: create container)

T2M
(3h) SUBSETTING

[lat, lon]

(Apulia & Greece)

EXPORT

Temperature (T2M) every 3 hours for 3 days

IMPORT
(before: create container)

APPLY
conversion

(from K to C)

TP
(3h) IMPORT SUBSETTING

[lat, lon]

(Apulia & Greece)

APPLY
shift time

dimension by 1
(fill value = 0)

INTERCUBE
TP in [i-3h, i]

(cube - cube2)

< cube >

< cube2 >

EXPORT

Total Precipitation every 3 hours for 3 days

(before: create container)

U10M
(3h)

V10M
(3h)

SUBSETTING
[lat, lon]

(Apulia & Greece)

SUBSETTING
[lat, lon]

(Apulia & Greece)

INTERCUBE
Compute wind speed

(abs(U10M,V10M))

EXPORT

IMPORT
(before: create container)

Wind (u10m, v10m, wind_speed) every 3 hours for 3 days

IMPORT
(before: create container)

EXPORT

EXPORT

MAP GENERATION
(daily maps)

Meteo
MapsMAP GENERATION

(daily maps)

Meteo
MapsMAP GENERATION

(daily maps)

MULTICUBE
merge

Meteo
MapsMAP GENERATION

(daily maps)

APPLY
fire danger index

(FWI)

EXPORT MAP GENERATION
(daily maps)

Fire
Danger
Maps

FWI Fire Danger Index

APPLY
conversion

(from m/s to km/h)

APPLY
conversion

(from m/s to km/h)

D2M
(3h) SUBSETTING

[lat, lon]

(Apulia & Greece)

EXPORT

Relative Humidity (RH) every 3 hours for 3 days
from T2M and D2M (dew point temperature)

IMPORT
(before: create container)

Meteo
MapsMAP GENERATION

(daily maps)

APPLY
compute saturation

vapor pressure

APPLY
compute

vapor pressure

INTERCUBE
Compute RH

APPLY
conversion

(from decimals
to percentages)

MULTICUBE
merge

APPLY
fire danger index

(FFWI)

EXPORT MAP GENERATION
(daily maps)

Fire
Danger
Maps

FFWI Fire Danger Index

MULTICUBE
merge

APPLY
fire danger index

(IFI)

EXPORT MAP GENERATION
(daily maps)

Fire
Danger
Maps

IFI Fire Danger Index

REDUCTION
[time] sum

(daily TP)

SUBSETTING
[time]

(T2M at noon)

SUBSETTING
[time]

(RH at noon)

SUBSETTING
[time]

(WS at noon)

IMPORT
previous day
index values

REDUCTION
[time] mean

(day)

REDUCTION
[time] mean

(day)

REDUCTION
[time] max

(day)

REDUCTION
[time] mean

(day)

REDUCTION
[time] min

(day)

REDUCTION
[time] mean

(day)

REDUCTION
[time] max

(day)

REDUCTION
[time] sum

(24h-TP at noon)

IMPORT
previous day
last 12h-TP

EXPORT
 last 12h-TP
of 1st day

OFIDIA main objective is to build a cross-border operational fire danger prevention
infrastructure that advances the ability of regional stakeholders across Apulia and Ioannina

Regions to detect and fight forest wildfires

Workflow runtime execution (fire danger analysis)

https://www.youtube.com/watch?v=vxbYF1Zhpuc&feature=youtu.be

Images Calibration Workflow	
Ophidia has been used to calibrate astronomic LRS images.

Input and output datasets are in FITS (Flexible Image Transport System) format.

Workflow involves 9 tasks.

•  Creation of the Ophidia
container

•  Import of the 3 input FITS
files: LRS, master flat and
master bias

•  Cast of the master flat
dataset to allow comparison

•  Subtraction LRS – mbias
•  Subtraction mflat – mbias
•  Final Image calibration

(LRS-mbias)/(mflat-mbias)
•  Export as FITS file

Images Calibration Output	
The Ophidia terminal is used to submit the workflow and to check the progress status
of the execution.

Output data can be displayed in a tabular form using the explorecube operator and
exported for visualization.

ü  PyOphidia provides a Python interface to

submit commands to the Ophidia Server

and to retrieve/deserialize the results

ü  Two classes implemented:

ü  Client class: connect to the server,

navigate into the ophidia file system,

submit workflows, manage sessions,

etc.

ü  Cube class: manipulate cubes

(reduce, subset, operations between

cubes, intercomparison, etc.), get

information on cubes (schema,

dimensions, metadata, etc.)

Programmatic access through the PyOphidia class	

hGps://pypi.python.org/pypi/PyOphidia/1.2.1	

hGps://www.youtube.com/watch?v=8pcrBXboF6U&feature=youtu.be	

Documentation – http://ophidia.cmcc.it	

User, administration and devel guides	

Operators manual	

Conclusions

�  Ophidia is a big data analytics framework for eScience

�  OLAP approach for big data – multidimensional data model

�  Multiple use cases for data analysis in different domains/contexts have been implemented

�  It provides access via CLI (end-users) and API (devel users)

�  Official Release available from February 2016 on github

Future activities will regard:

•  Automatic recovery of data from node failures is under testing.

•  Implementation of plugins for additional storage systems (e.g. HDFS, WOS).

•  Integration of check-point mechanisms to manage data cubes over a two-layer (persistent/memory)
storage system

Ophidia – Useful Resources

•  Website: http://ophidia.cmcc.it

•  Doc : http://ophidia.cmcc.it/documentation

•  The Ophidia code is available on GitHub under GPLv3 license at
https://github.com/OphidiaBigData

•  RPMs are also available for CentOS7 and Ubuntu14 at the following repo:
http://download.ophidia.cmcc.it/

•  Youtube Channel

https://www.youtube.com/user/OphidiaBigData/

•  A Virtual Machine Image (OVA format) is also available at
https://download.ophidia.cmcc.it/vmi_desktop/ to get started in a few minutes
with Ophidia

Thanks	

http://ophidia.cmcc.it	

@OphidiaBigData	

www.youtube.com/user/OphidiaBigData

