
Bridging the complexity gap: Tracing and Replaying I/O

UIOP 2017, Hamburg, Mar. 22nd

Jean-Thomas Acquaviva, DDN Storage

Complexiy: E.g NSCC / A*STAR 1PF Compute Cluster Nodes at NTU MetroX MetroX EDR Infiniband N/w

Burst Buffer with DDN Infinite Memory Engine (IME) at 500 GB/s Performance

DDN GRIDScaler For Home & Nearline

3.5PB at 100 GB/s performance

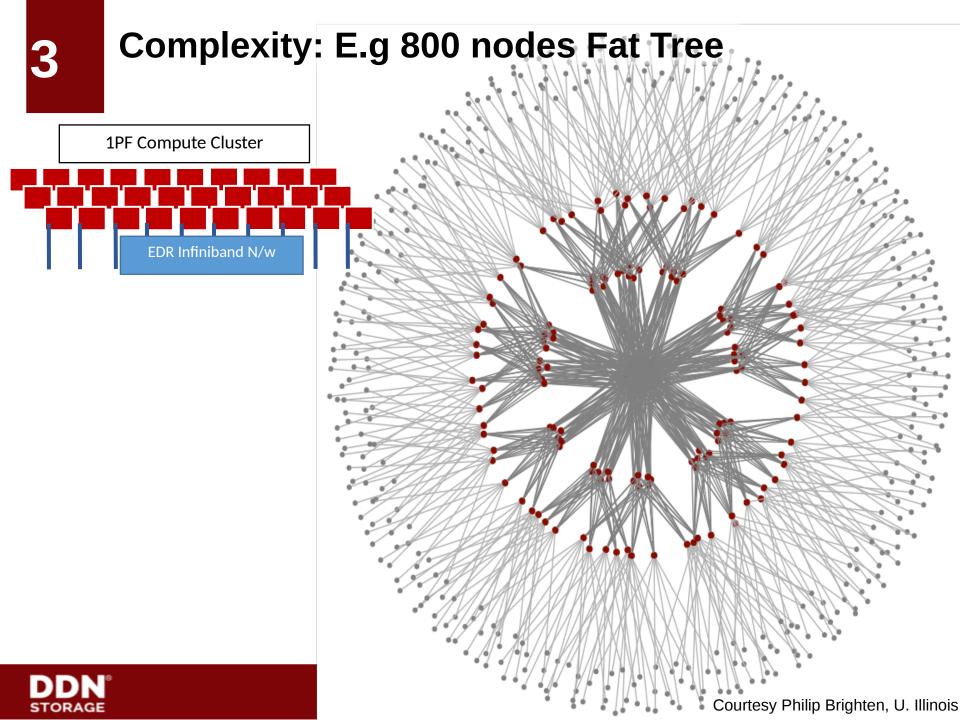
DDN EXAScaler (Lustre) For Scratch 4PB at 200 GB/s performance

GS-WOS Bridge WOS over

10GbE

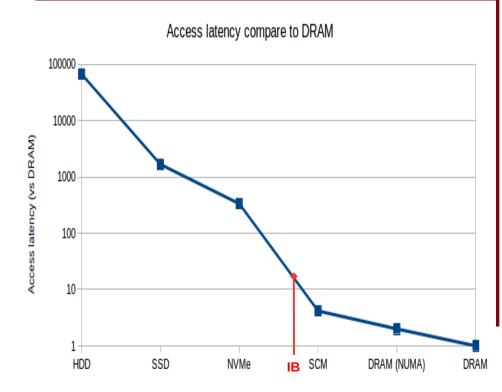
5PB DDN WOS Object **Storage Archive**

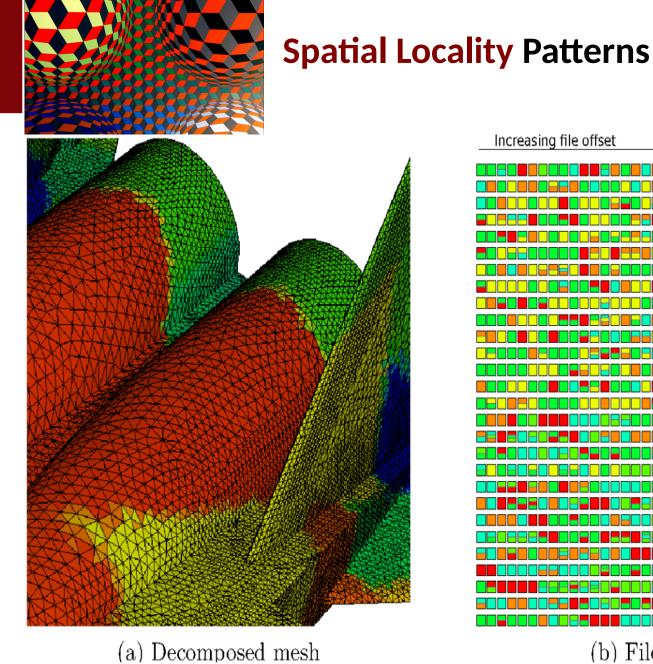
PFS Stats Collection &

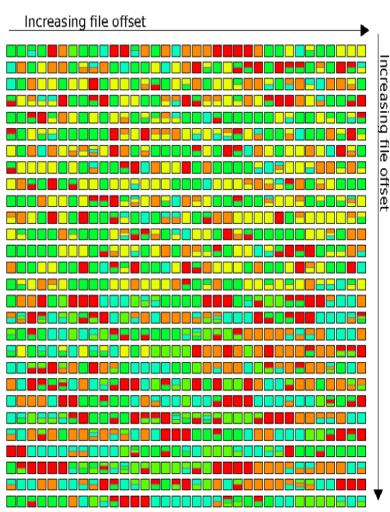

Monitoring

NAS Gateways & Data **Transfer Nodes**

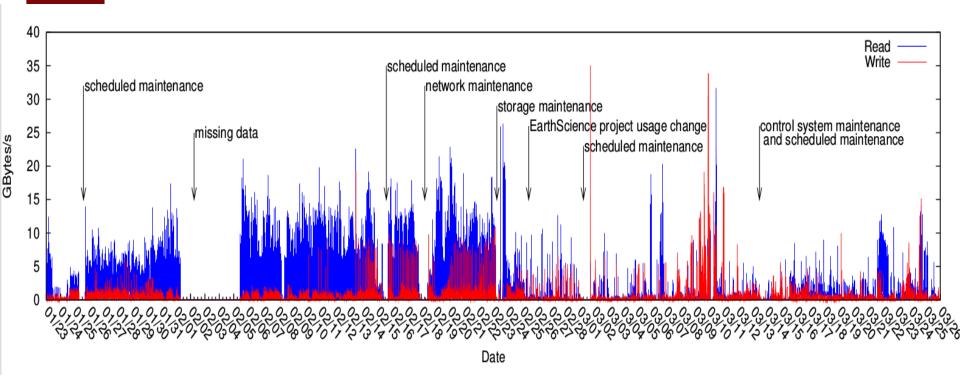
© 2016 DataDirect Networks, Inc. * Other names and brands may be claimed as the property of others. Any statements or representations around future events are subject to change UUII COUID




Complexity Trend: Deeper Storage Hierarchy


Hierarchy mechanically increases predominance of patterns in the performance equation

© 2016 DataDirect Networks, Inc. * Other names and brands may be claimed as the property of others. Any statements or representations around future events are subject to change.



(b) File mapping

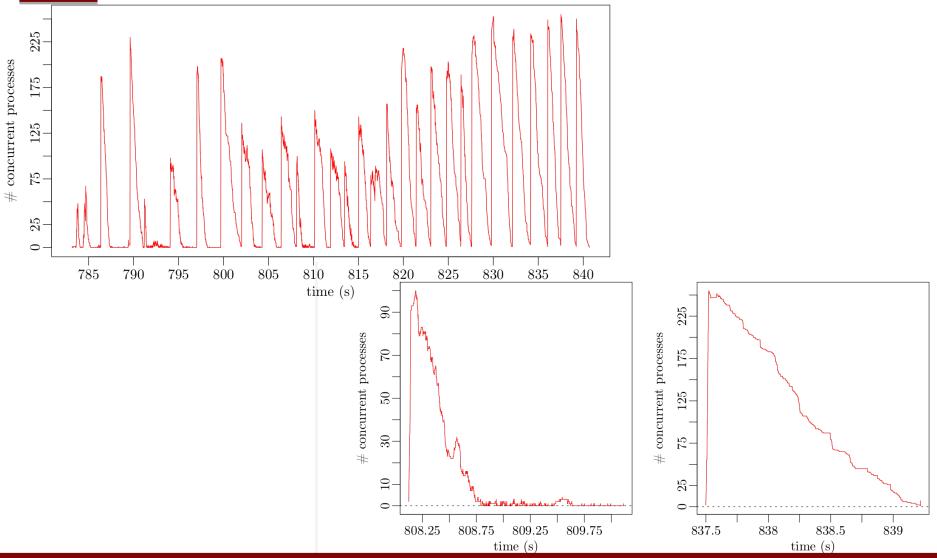
STORAGE

Source: Storage Models: Past, Present, and Future. Dres Kimpe et Robert Ross, Argonne National Laboratory

Temporal pattern

99% of the time the IO sub-system is stressed bellow 30% of its bandwidth 70% of the time the system is stressed under 5% of its peak bandwidth

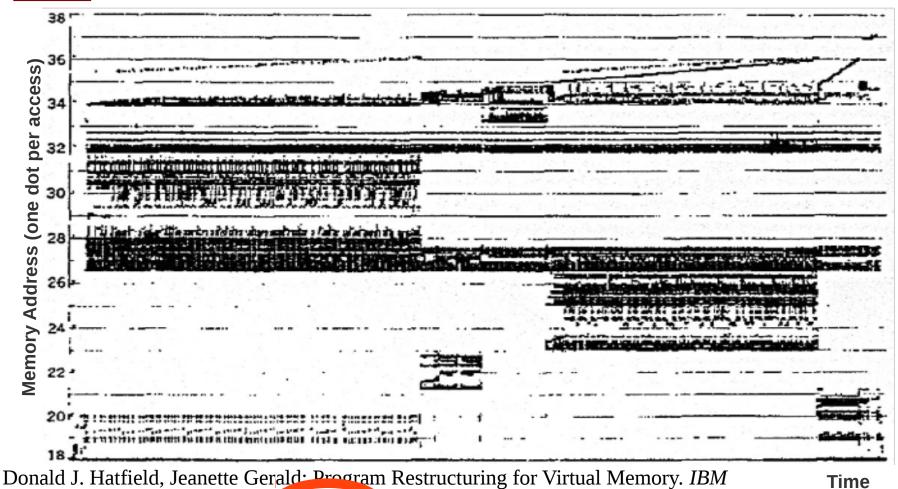
Argone lab.


6

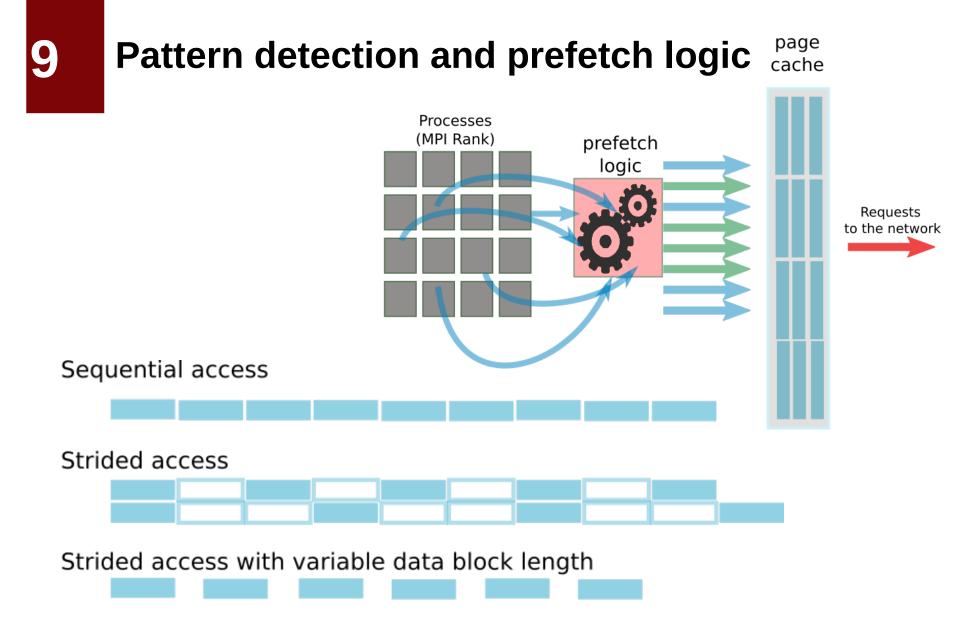
P. Carns, K. Harms et al., Understanding and Improving Computational Science Storage Access through Continuous Characterization

ddn.com

File contention is temporal



7


© 2016 DataDirect Networks, Inc. * Other names and brands may be claimed as the property of others. Any statements or representations around future events are subject to change.

Spatial and Temporal Patterns

Systems Journal, 10 (3): 168-19 (1971)

© 2015 DataDirect Networks, Inc. * Other names and brands may be claimed as the property of others. Any statements or representations around future events are subject to change.

10 → increased life expectancy

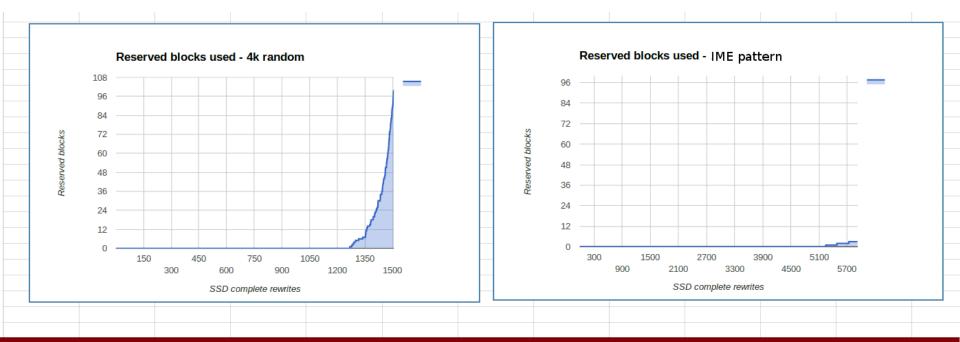
Vendors estimate life time on 4K random write pattern
 IME limits write amplification

3) Combo: better performance + longer life

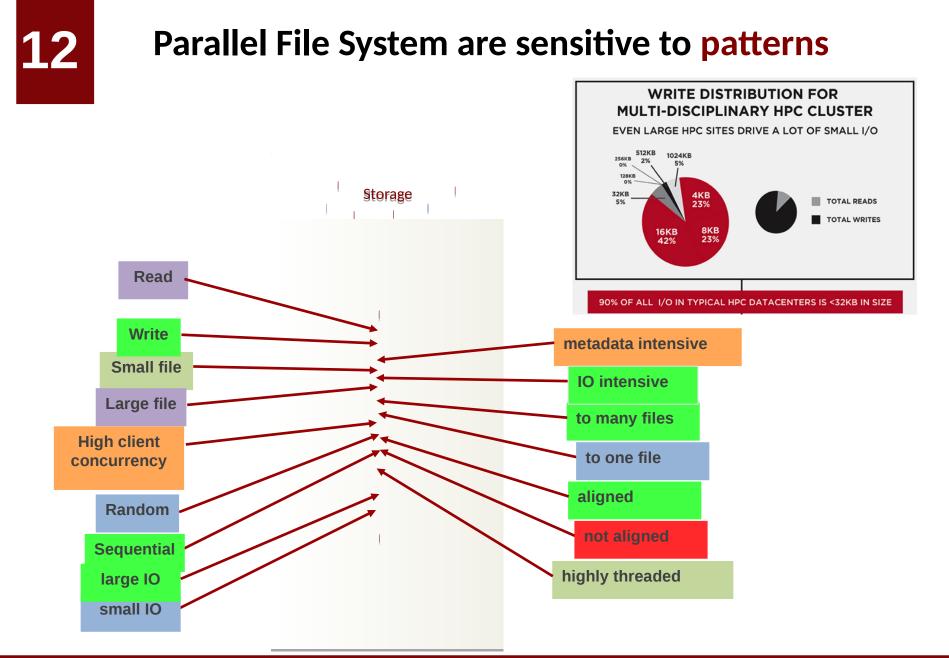
Testbed:

Burning SSD with different patterns + monitoring SMART counters

ID# ATTRIBUTE_NAME 5 Reallocated_Sector_Ct	FLAG 0x0033	VALUE 093	WORST 093	THRESH 010	TYPE Pre-fail	UPDATED Always	WHEN_FAILED	RAW_VALUE 62
9 Power On Hours	0x0033 0x0032	093	093	000	Old_age	Always	-	1986
12 Power_Cycle_Count	0x0032	099	099	000	01d_age	Always	_	7
177 Wear Leveling Count	0x0013	001	001	000	Pre-fail	Always	-	, 6242
179 Used_Rsvd_Blk_Cnt_Tot	0x0013	093	093	010	Pre-fail	Always	-	62
181 Program_Fail_Cnt_Total	0x0032	100	100	010	Old_age	Always	-	0
182 Erase_Fail_Count_Total	0x0032	100	100	010	0ld_age	Always	-	Θ
183 Runtime_Bad_Block	0x0013	093	093	010	Pre-fail	Always	-	62
187 Reported_Uncorrect	0x0032	099	099	000	0ld_age	Always	-	21
190 Airflow_Temperature_Cel	0x0032	059	048	000	0ld_age	Always	-	41
195 Hardware_ECC_Recovered	0x001a	199	199	000	0ld_age	Always	-	21
199 UDMA_CRC_Error_Count	0x003e	100	100	000	0ld_age	Always	-	Θ
235 Unknown_Attribute	0x0012	099	099	000	Old_age	Always	-	2
241 Total_LBAs_Written	0x0032	099	099	000	Old_age	Always	-	
346288758224								



Assess devices Life expectancy
 Understand deprecation rate


→ preventive maintenance

© 2015 DataDirect Networks, Inc. * Other names and brands may be claimed as the property of others. Any statements or representations around future events are subject to change.

- Real applications
- Synthetic benchmarks
- Analytical Model
- Mini-app

Real applications

- Best estimation of production run
 - Is the application going to run alone?
- Costly: require expertise and topnotch engineering

Synthetic benchmarks

- IOR
- IOZONE
- MDTEST
 - Do not capture temporal locality

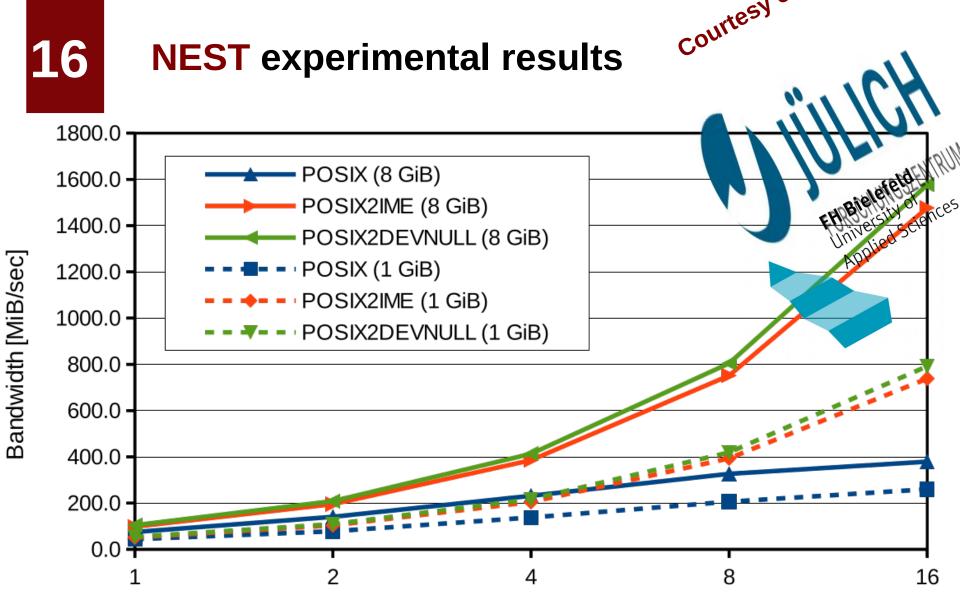
15

Analytical Model: courtes NEural Simulation Tool (NEST)

NEST, computational neuro-science

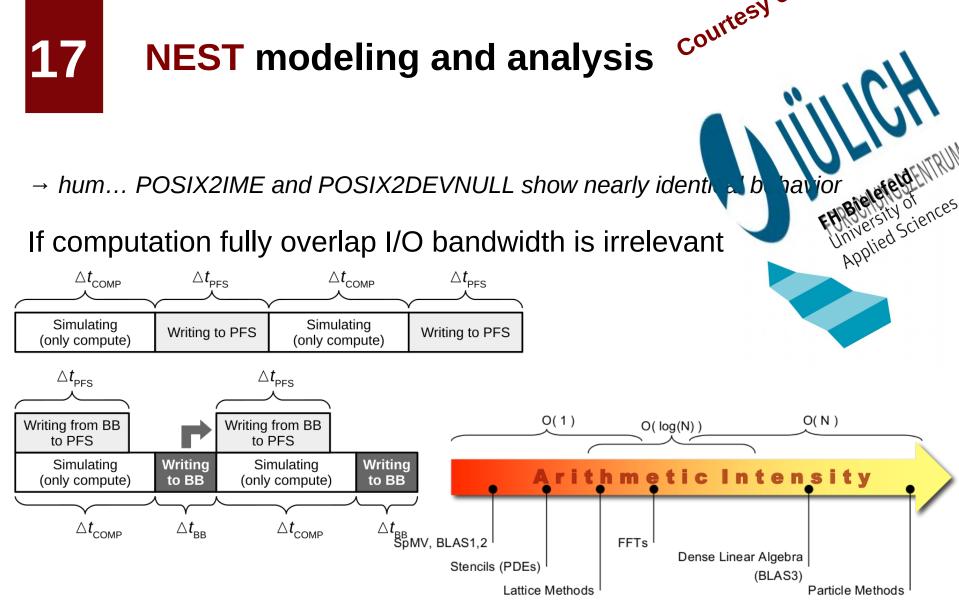
- Dynamics of interactions between nerve cells
- First step of wiring a neural network
- Next step simulate the network of spiking point neurons
- Developed for both local small experiments or deployment on leading super-computer for extreme-scale simulations
 - → MPI + OpenMP
- I/O pattern burst of write at the end of every simulation step

Early Evaluation of the "Infinite Memory Engine" Burst Buffer Solution WOPSSS '16, 2016, Frankfurt


Wolfram Schenck

Faculty of Engineering and Mathematics Bielefeld University of Applied Sciences Bielefeld, Germany Salem El Sayed, Maciej Foszczynski, Wilhelm Homberg, Dirk Pleiter

Jülich, Germany Jülich Supercomputing Centre Forschungszentrum Jülich


Applied Sciences

Number of compute nodes (with 23 MPI ranks per node)

Platform – JUDGE: IBM iDataPlex NodeDual Xeon Westmere – 48 GB RAM – Network IB-QDR

1 bit of I/O per FLOP is a rule of thumb [see Jim Gray]

Analytical model

Allow to understand

- Bottleneck isolation
 - Optimize both application and architecture

Difficult to scale

- Difficult to extend to an application portfolio
- Difficult to model complex workload
 - Resource sharing

Mini-apps: Brain Simulation and Neuromapp

Brain simulator are large SW **3** decades of development 500 KLOC + DSL + src2src compiler

Mini-apps have been fashionable since quite a while in HPC it's reaching now I/O

ECOLE POLYTECHNIQUI

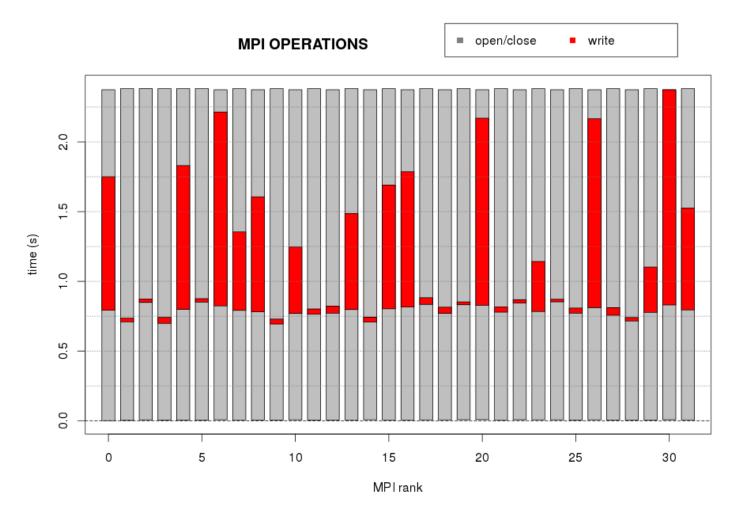
See github.com/PETTT

NeuroMapp

- Mini-app framework
- Each mini-app (1KLOC) represents a single critical neuron scientific algorithm\$
- Stay tuned, results to be published

Mini-apps can be assembled together

- Form the skeleton of the initial scientific application
- DERALE DE LAUSANN Experiment work-flow optimization to the provide stain and the stain and

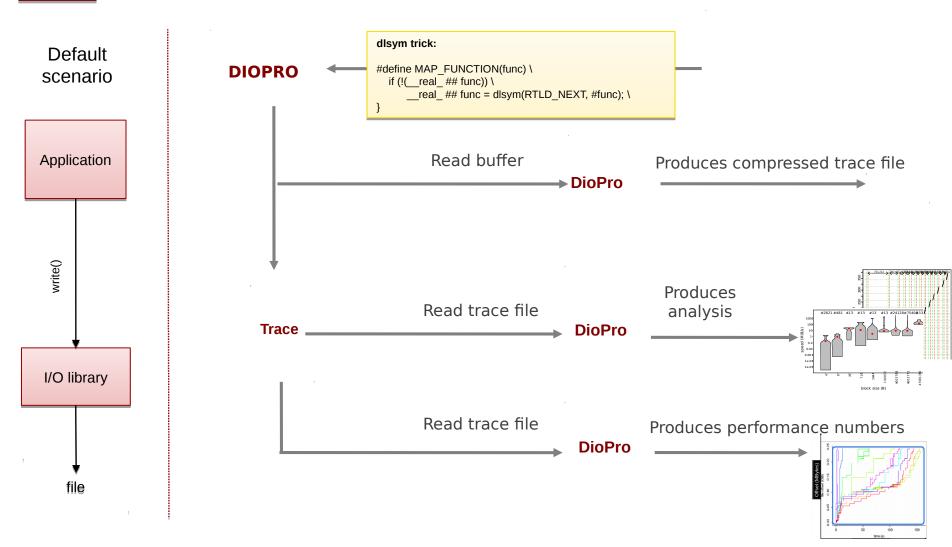

Mini-App: summary

Easy to deploy

- Provide 'reasonable' estimations
- Provide 'reasonable' insight
- Costly to develop
 - Require code maintenance
 - Evolve jointly with the core application

I/O Profiling with DIO-pro

22


-

- Capture I/O traffic
 - Cope with high I/O loads (overhead <1%)
 - Support Posix and MPI-IO
- Characterize I/O patterns
 - Build a distributed accurate clock
- Evaluate I/O efficiency
- Extrapolate performances
 - Architectural prospection
 - Estimate IME perf. impact
 - DIO-pro is not yet a product still a prototype

General overview of DIOPRO

DIO-pro sanity check

\$ zcat /tmp/dio-pro/iotrace-jobid-*.bin.gz | dio-pro-xml | dio-pro-stat -p | grep 'Process\|write'
Process 1: ID: 12382 - MPI rank: 0
write 67.108864 MB 1 0.078378 s 816.558 MiB/s 816.558 MiB/s 816.558 MiB/s 0 B/s
Process 2: ID: 12383 - MPI rank: 1
[...]
Process 8: ID: 12390 - MPI rank: 7
write 67.108864 MB 1 0.150335 s 425.717 MiB/s 425.717 MiB/s 425.717 MiB/s 0 B/s

(bytes*8)/max(time)/1024^2 = [MiB/s] (67108864*8)/max(0.078378,0.093811,0.086434,0.167011,0.065349,0.111760,0.167680,0.150335)/1024^2 = **3053.435 MiB/s**

24

What To Do With I/O Traces? **Observe!**

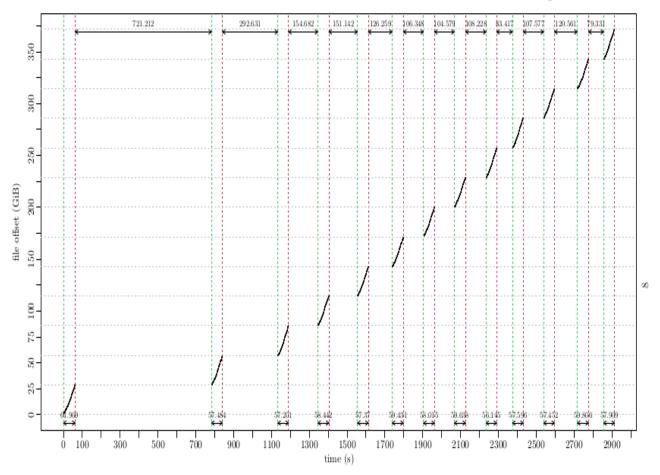


Figure 4: Temporal overview of the .bigSharedFile file's write offset. IO MPI Ranks ranks write to the .bigSharedFile file in 13 steps, as shown in the figure. Each step contains 29 arrays. If one could zoom into the arrays, IO MPI Ranks blocks of around 4MB would be visible (See Figure 7). The time-wise length (bottom arrows) of each I/O step is indicated between the green and red vertical dashed lines. The time between each step is shown (top arrows) between the red and green dashed lines.

© 2016 DataDirect Networks, Inc. * Other names and brands may be claimed as the property of others. Any statements or representations around future events are subject to change.

What To Do With I/O Traces? Solve!

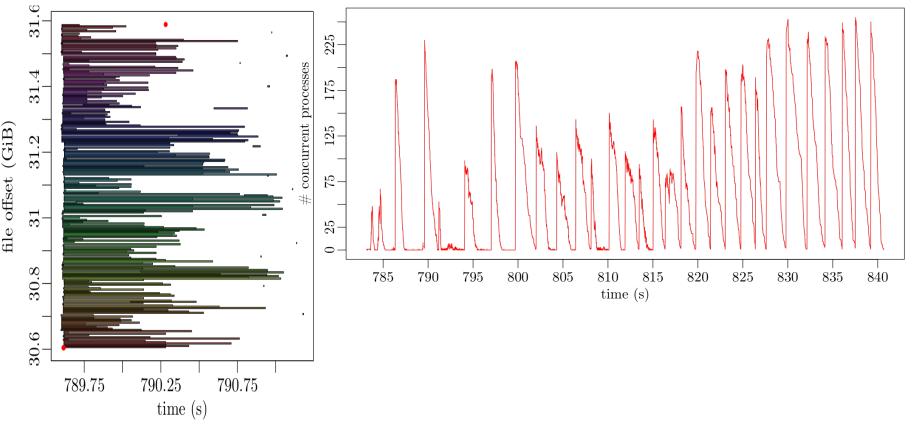

TAG	Ranks	READ				WRITE					Meta			
TAG	RANKS	%	sec	bytes	MiB/s	#	%	sec	bytes	MiB/s	#	%	sec	#
M1	0:263	0	0	0	0	0	94.11	50565.613	399,101,407,640	7.527	102895	0.84	11.344	100056
M2	0:2499	0	0	0	0	0	1.17	5954.931	9,526,773,296	1.526	6670	4.29	545.382	12500
M3	0:2499	0	0	0	0	0	1.14	5778.100	$25,\!046,\!129,\!003$	4.134	8711	2.48	315.829	15005
M4	0:2499	0	0	0	0	0	1.01	5143.017	22,747,889,798	4.218	8711	1.43	182.066	15005
M5	0:2499	0	0	0	0	0	0.84	4262.277	$28,\!538,\!881,\!332$	6.386	7341	3.76	478.320	72500
M6	0:2499	0	0	0	0	0	0.36	1811.795	4,967,209,534	2.615	6672	0.91	115.303	7522
M7	0:2499	0	0	0	0	0	0.17	857.708	1,111,308	0.001	8778	1.72	219.008	5033
M8	0:2499	0	0	0	0	0	0.14	736.059	1,111,308	0.001	8778	1.51	191.449	5033
M9	0:2499	0	0	0	0	0	0.09	461.604	791,404	0.002	6650	1.33	168.908	5025
M10	0:2499	0	0	0	0	0	0.05	231.236	1,056,995,742	4.359	276	1.35	171.514	7501
M11	0:3	0	0	0	0	0	0.53	4.306	245,253,112	54.315	351	0.81	0.165	60
M12	0:3	0	0	0	0	0	0.38	3.065	132,058,908	41.095	68	0.03	0.006	24
M13	0	0	0	0	0	0	0.02	0.034	1,275,584	35.799	56	0.05	0.002	6
M14	0	0	0	0	0	0	0.01	0.013	2,369,796	177.234	312	0.01	0.001	15
M15	0	0	0	0	0	0	0.00	0.003	$132,\!624$	36.152	648	0.01	0.001	28
M16	0	0	0	0	0	0	0.00	0.002	150,080	67.359	336	0.01	0.001	16 6 2
M17	0	0	0	0	0	0	0.00	0.000	74,580	169.832	56	0.01	0.001	Ŷ
M18	0	0	0	0	0	0	0.00	0.000	33,924	116.803	56	0.01	0.001	6
M19	0:2499	52.84	46018.207	$16,\!944,\!108,\!416$	0.351	37500	0	0	0	0	0	8.85	1124.747	25000
M20	0:2499	5.83	5079.783	1,057,315,552	0.198	17500	0	0	0	0	0	7.06	897.779	17500
M21	0:2499	5.65	4922.981	1,057,315,552	0.205	17500	0	0	0	0	0	8.61	1095.296	17500
M22	0:2499	5.58	4860.482	1,057,315,552	0.207	17500	0	0	0	0	0	10.24	1302.176	17500
M23	0:2499	5.36	4670.732	1,057,315,552	0.216	17500	0	0	0	0	0	9.63	1224.194	17500
M24	0:2499	5.16	4491.221	1,057,315,552	0.225	17500	0	0	0	0	0	7.58	963.684	17500
M24	0:2499	5.14	4476.999	1,057,315,552	0.225	17500	0	0	0	0	0	7.21	916.270	17500
M25	0:2499	5.01	4365.792	1,057,315,552	0.231	17500	0	0	0	0	0	6.84	870.168	17500
M27	0:2499	4.83	4210.032	1,057,315,552	0.240	17500	0	0	0	0	0	6.89	876.195	17500
M28	0:2499	4.58	3986.756	1,057,315,552	0.253	17500	0	0	0	0	0	6.52	828.806	17500
Total		14.31	87083.0	$26.459\mathrm{GB}$		195000	83.60	75809.76	$491.370\mathrm{GB}$		167365	2.09	12498.6	427841

Table 10: Per file read/write/meta activity as observed for MPI. Times indicated are the sum of the time spend by all ranks in that particular operation. REL indicates the perceptual share of that file in its read/write/meta category, time-wise. The orange tags are files also present in the POSIX table.

What To Do With I/O Traces? Solve!

Hot file show a pathological contention pattern

What To Do With I/O Traces? Solve!

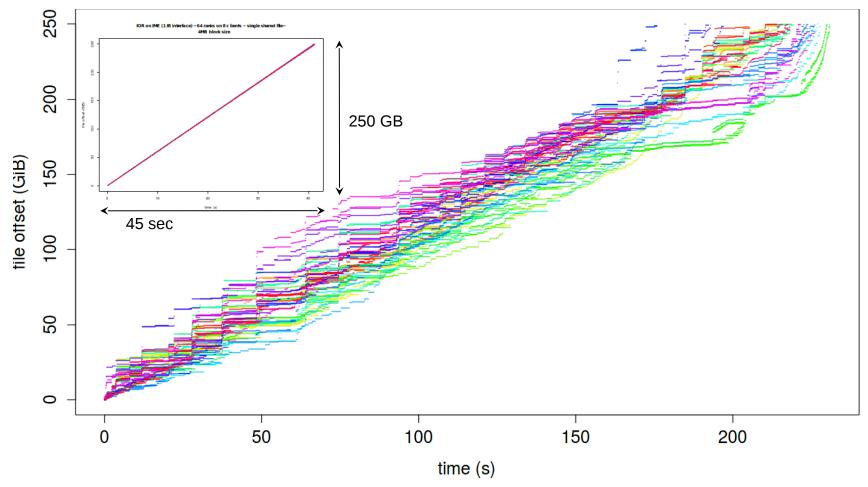
- Replication of the I/O pattern in Düsseldorf /Paris lab.
- HW optimization (IME) improves performance by x 64
- SW optimization (MPI-IO rewriting/ tuning) improve performance by x 1.2 (20%)

29

What To Do With I/O Traces? Replayer

- Instead of rewriting application I/O kernel replay its trace !
- Application characterization on large trace (2000+ ranks)
 - Isolate critical files
- Estimate control (metadata + synchronization) vs data cost
 - Distribution: metadata = 18.89%, barrier = 1.46%, data = 79.64%
- Search for symmetry
- Maintain group weight in downsizing
- Performance offset shift to avoid discontinuity artifact

$$W_i = \frac{\#ranks \text{ in group i}}{total \#ranks}$$



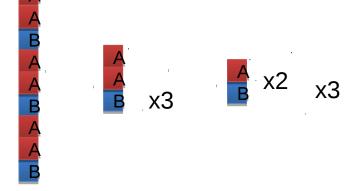
11 1 1

Replayer for architectural investigation IME vs Spectrum Scale

30

IOR single shared file - 64 ranks on 8 clients 4MB block size

© 2016 DataDirect Networks, Inc. * Other names and brands may be claimed as the property of others. Any statements or representations around future events are subject to change.


31 How to generate an I/O signature

Structured part

- Exploiting the deterministic behavior
- Noise needs to be removed beforehand
- Grammar analysis \rightarrow identifying structure in sequences
 - Nested Loop Recognition (University Of Strasbourg)
 - Sequitur (Google, University of Waikato)

Random part

Quantized via statistical analysis
 Continuous-time Markov chain modeling
 Long-range dependency matching
 Use of robust statistical methods

Standardized I/O signature formulation

DIO-pro an on-going effort

- Complexity is becoming unmanageable
- New app. challenge *our* (mine) expertise
- Fill a gap in the performance investigation stack
 - Full application
 - \rightarrow We are here !
 - Mini-app
 - Synthetic kernel
 - Analytical mode

isc-hpc-io.org

ISC Workshops

June 22, 2017 | Frankfurt, Germany WOPSSS HPC I/O in the Data Center

Join us for a day of workshops dedicated to I/O at ISC High Performance 2017 on June 22, 2017.

WOPSSS

The Workshop On Performance and Scalability of Storage Systems (WOPSSS) aims to present state-of-the-art research, innovative ideas, and experience that focus on the design and implementation of HPC storage systems in both academic and industrial worlds, with a special interest on their performance analysis.

The arrival of new storage technologies and scales unseen in previous practice lead to significant loss of performance predictability. This will leave storage system designers, application developers and the storage community at large in the difficult situation of not being able to precisely detect bottlenecks, evaluate the room for improvement, or estimate the matching of applications with a given storage architecture. WOPSSS intends to encourage discussion of these issues through submissions of researchers or practitioners from both academic and industrial worlds.

All accepted papers will be published in the Proceedings by Springer Extended versions of the best papers will be published in the ACM SIGOPS (http://www.sigops.org/osr.html) journal Papers need to be submitted via Easychair (http://easychair.org/conferences/?conf=wopsss2017).

Submission Deadline: March 31 Workshop: June 22

I/O in the Data Center Workshop

Managing scientific data at large scale is challenging for scientists but also for the host data center. The storage and file systems deployed within a data center are expected to meet users' requirements for data integrity and high performance across heterogeneous and concurrently running applications.

© 2015 DataDirect Networks, Inc. * Other names and brands may be claimed as the property of others. Any statements or representations around future events are subject to change.

Thank You! Keep in touch with us

sales@ddn.com

@ddn_limitless

company/datadirect-networks

9351 Deering Avenue Chatsworth, CA 91311

 $\begin{array}{c} 1.800.837.2298 \\ 1.818.700.4000 \end{array}$

© 2016 DataDirect Networks, Inc. * Other names and brands may be claimed as the property of others. Any statements or representations around future events are subject to change.

