
1/

PIOM-PX: A Framework for Modeling the I/O
Behavior of Parallel Scientific Applications

Authors: Pilar Gomez-Sanchez, Sandra Mendez, Dolores Rexachs, Emilio Luque

June 2017

Introduction

• Parallel applications produce a huge amount of data that
represents a challenge for modern I/O systems.

• Depending on the I/O behavior of parallel applications and the
processing performed in each layer of the I/O software stack, the
performance obtained can differ significantly from the maximum
performance expected.

• Understanding I/O behavior is fundamental to evaluate the I/O
performance of the HPC applications.

2/

Introduction

• Most parallel application have a repetitive
behavior when accessing a specific file.

• Due to the high cost of I/O operations, is
normally intended to reduce the number of
accesses, resulting in sporadic systematics
bursts of I/O operations.

• The knowledge of I/O behavior allows us to
determine the I/O requirements of the
application and to evaluate their impact on
different I/O configurations.

3/

Objectives

Define an I/O behavior model based on I/O Phase at the POSIX-IO
level.

• Select the main parameters at POSIX-IO level to have a
determined portable model.

• Define a design framework , PIOM-PX.

4/

Framework

5/

We classify the application features as parameters for PIOM-PX into three levels:
application, file, and phase.

PIOM-PX was integrated with PIOM-MP, which allows us to trace I/O activities at
MPI and POSIX-IO level.

Framework
Modules

6/

Trace module:

• Analyzed MPI Applications.

• A trace file is generated for each MPI process.

• Intercept the MPI events and the most renowned POSIX-IO operations.

Framework
Modules

7/

Post-processing

• Extracting I/O operations : extract the I/O operations per file opened
by the application of each trace file into a new file.

• Updating I/O operations: detect when the offset and request size (rs)
informed require evaluating another operation to obtain the request
or offset.

Post-processing

• Analyzing 1 File: (Example 1 file x process)

8/

r w r w r w r r w w

file_id=1; Ph_np=1 Phase Properties
Ph_weight =Ph_np x rs x Ph_niop x rep

MPI events Compute

open and close Read and write POSIX-IO operations

Post-processing

• Analyzing 1 File: (Example 1 file x process)

9/

r w r w r w r r w w

file_id=1; Ph_np=1 Phase Properties
Ph_weight =Ph_np x rs x Ph_niop x rep

MPI events Compute

open and close Read and write POSIX-IO operations

Post-processing

• Analyzing 1 File: (Example 1 file x process)

10/

r w r w r w r r w w

file_id=1; Ph_np=1 Phase Properties
Ph_weight =Ph_np x rs x Ph_niop x rep

MPI events Compute

open and close Read and write POSIX-IO operations

Post-processing

• Analyzing 1 File: (Example 1 file x process)

11/

r w r w r w r r w w

file_id=1; Ph_np=1 Phase Properties
Ph_weight =Ph_np x rs x Ph_niop x rep

MPI events Compute

open and close Read and write POSIX-IO operations

Post-processing

• Analyzing 1 File: (Example 1 file x process)

12/

r w r w r w r r w w

file_id=1; Ph_np=1 Phase Properties
Ph_weight =Ph_np x rs x Ph_niop x rep

Phase 1 Phase 1 Phase 1 Phase 2 Phase 3

MPI events Compute

open and close Read and write POSIX-IO operations

Post-processing

• Analyzing 1 File: extracting the Spatial pattern.

13/

r w r w r w r r w w

file_id=1; Ph_np=1

MPI events Compute

open and close Read and write POSIX-IO operations

Phase Properties
Ph_weight =Ph_np x rs x Ph_niop x rep

Phase 1 Phase 1 Phase 1 Phase 2 Phase 3

Ph_id = 1
Ph_niop = 2
IOP = (r, w); rep=3
rs = 16MiB ; Ph_weight=288MiB

Ph_id = 2
Ph_niop = 2
IOP = r ; rep=1
rs = 16MiB
Ph_weight=32MiB

Ph_id = 3
Ph_niop = 2
IOP = w ; rep=1
rs = 16MiB
Ph_weight=32MiB

Post-processing

• Analyzing 1 File: extracting the Temporal Pattern.

14/

r w r w r w r r w w

file_id=1; Ph_np=1

MPI events Compute

open and close Read and write POSIX-IO operations

Phase 1 Phase 1 Phase 1 Phase 2 Phase 3

2

1.1

tick

subtick 1.2 1.3 1.4 1.5 1.6 1.7 2.1 2.2

1 3

3.1 3.2

Experimental Case in different HPC systems

• 1 File per Process using POSIX interface.

• 1 File per Process using MPI-IO interface.

• A single shared file using collective buffering technique in automatic
mode for a strided pattern.

• A single shared file using collective buffering technique in enable
mode for a strided pattern.

15/

1 File per Process using POSIX interface

Identifier Values

app_np 16

app_nfiles 16

app_st 128 MiB

File

file_name testFile<IdProcess>

file_size 8 MiB

file_accessmode Seq

file_fileaccesstype W/R

file_accesstype 1Fx1Proc

file_nphase 2

file_np 1

1 File per Process using POSIX interface

17/

Identifier Values

app_np 16

app_nfiles 16

app_st 128 MiB

File

file_name testFile<IdProcess>

file_size 8 MiB

file_accessmode Seq

file_fileaccesstype W/R

file_accesstype 1Fx1Proc

file_nphase 2

file_np 1

file_id = 0 file_id = 1 file_id = 14

read operation

write operation

Ph_id = 2
Ph_np=1
Ph_niop = 8
rep=1
IOP= (r)

Ph_id = 1
Ph_np = 1
Ph_niop = 8
rep=1
IOP=(w)

MPI rank

1 File per Process using POSIX interface

18/

Identifier Values

app_np 16

app_nfiles 16

app_st 128 MiB

File

file_name testFile<IdProcess>

file_size 8 MiB

file_accessmode Seq

file_fileaccesstype W/R

file_accesstype 1Fx1Proc

file_nphase 2

file_np 1 Ph_id = 1 (w) , 2 (r) ; IOP =(w) (r) ; Ph_weight (w)= 1 x 1 x 8 x 1MiB = 8MiB
Ph_np = 1 ; rep =1 ; Ph_weight (r)= 1 x 1 x 8 x 1MiB = 8MiB
Ph_niop = 8 ; rs = 1MiB

Ph_weight =Ph_np x rs x Ph_niop x rep

Experimental
Results

Environment

Applications
BT-IO Full, Class: A, B and C

PIOM-PX parameters for the BT-IO
benchmark subtype FULL

20/

Experimental Results

21/

File offset at MPI level by using PIOM-MP

File offset and Phase Weight at POSIX-IO
using PIOM-PX

Write Weight Phase Read Weight Phase

10485760 bytes 10485760 x 40 bytes

Write Weight Phase Read Weight Phase

655360 bytes x 16 bytes 655360 bytes x 16 x 40

Weight Phase : 1 Write operation 655360 bytes

Conclusions

• Our approach allows us to obtain the
application's I/O behavior at phase level.

• We can observe different I/O behavior at
different I/O level

• I/O behavior helps to understand the
relationship between the application and
the I/O system.

• Our framework makes it possible to have
accurate information over the I/O phases.

23/

PIOM-PX: A Framework for Modeling the I/O
Behavior of Parallel Scientific Applications

Pilar Gomez Sanchez
pilar.gomez@uab.es

http://grupsderecerca.uab.cat/hpc4eas June 2017

