Space and Performance Optimizations of NetCDF-Grids

Eugen Betke, Julian Kunkel, Jakob Luettgau

Research Group German Climate Computing Center

2017-09-26

Eugen Betke, Julian Kunkel, Jakob Luettgau (DKRZ)

Shared NetCDF Grids

- Local vs. Shared NetCDF Grids
- NetCDF External Links

Grid I/O on Exascale HPC

- Introduction: Adaptive Tiering Approach
- Evaluation
- Results

Table Of Content

Shared NetCDF Grids

Local vs. Shared NetCDF GridsNetCDF External Links

2) Grid I/O on Exascale HPC

- Introduction: Adaptive Tiering Approach
- Evaluation
- Results

2017-09-26

3/23

Grid and Data in One File

Advantages

- Data and grid are connected
- Assignment of dimensions to variables is not necessary
- All disadvantages of redundancy
 - Increased usage of storage space and network bandwidth
 - Inconsistencies are possible

GRID

Grid and Data in Separate Files

Datafile_001.nc

DATA

Datafile_002.nc

DATA

Datafile_003.nc

DATA

Gridfile.nc GRID

- Advantages
 - Guaranteed consistency
 - Optimal usage of storage space and network bandwidth
 - Grid can be moved to a fast storage tier
 - Resulting in short loading times
 - Makes sense, because a grid is often reused
- Disadvantages
 - Data and grid are not connected
 - Assignemt of dimensions to variables is necessary

Examples from *HD*(*CP*)2 Model

- Model: HD(CP)2¹
- Grid and data are in separate files

Resolution	Grid size	Data size
in [cells]	in [GB]	in [GB]
2323968	2.8	100
7616120	9.1	340
22282304	27	1000

¹High definition clouds and precipitation for advancing climate prediction

Linked Grid and Data

- Grid and data are
 - stored in separate files
 - Iinked together
- Links are transparent to application
- Data files are backwards compatible

NetCDF-Patch

- Requires HDF5 Virtual Datasets (> HDF5-1.10.0)
- Extends NetCDF4 interface with external dimensions
- Details you find on our project webpage:
 - https://wr.informatik.uni-hamburg.de/research/projects/bullio/netcdf_external_links/start

Table Of Content

Shared NetCDF Grids
Local vs. Shared NetCDF Grids
NetCDF External Links

Grid I/O on Exascale HPC

- Introduction: Adaptive Tiering Approach
- Evaluation
- Results

2

2017-09-26

9/23

Motivation: GRID-I/O on Exascale HPC

Assumption: Exascale HPC will be build of

- Heterogenous storage tiers, e.g.
 - Burst Buffers, Lustre, ...
 - NVRAM, SSDs, HDDs, ...
- Large amount of cores
 - \bullet > 1.000.000
- Consequence: Large number of small I/O accesses
 - One of the most suboptimal I/O patterns for many storage technologies

Overview: Adaptive Tiering Approach

- Intelligent middleware
- Usage of several different storage technologies in an efficient way
- Redirection of I/O accesses to best fitted tiers, e.g.
 - small I/O accesses to a fast, expensive storage tier (e.g. Burst Buffer)
 - large I/O accesses to a slow, cheap storage tier (e.g. HDD-based Lustre)

Grid Example from HD(CP)2 Model

_							
1	h5ls GRID_3d_fine_D0M03_ML_20130502T000000Z.nc						
2	bnds	Dataset {2}					
3	clat	Dataset {22282304}					
4	clat_vertices	Dataset {22282304, 3}					
5	clon	Dataset {22282304}					
6	clon_vertices	Dataset {22282304, 3}					
7	height	Dataset {151}					
8	height_2	Dataset {150}					
9	height_2_bnds	Dataset {150, 2}					
10	height_bnds	Dataset {151, 2}					
11	ncells	Dataset {22282304}					
12	topography_c	Dataset {22282304}					
13	vertices	Dataset {3}					
14	z_ifc	Dataset {151, 22282304}					
15	z_mc	Dataset {150, 22282304}					
- 1							

- Variables have different sizes
- Models surface of the earth
- NetCDF4 file

Data Example from HD(CP)2 Model

1	bnds	Dataset {2}
2	cch	Dataset $\{360/lnf 22282304\}$
3	cct	Dataset {360/lnf 22282304}
4	clch	Dataset $\{360/\ln f, 1, 22282304\}$
5	clcl	Dataset {360/lnf 1 22282304}
6	clcm	Dataset {360/lnf 1 22282304}
7	clivi	Dataset {360/lnf 22282304}
ģ	clt	Dataset {360/lnf 22282304}
ă	clwyi	Dataset {360/Inf 22282304}
10	graunel gsp. rate	Dataset {360/lnf 22282304}
11	hail gsp_rate	Dataset {360/lnf 22282304}
12	hbas con	Dataset {360/lnf 22282304}
13	htop_cop	Dataset {360/lnf 22282304}
14	htop_con	Dataset {360/lnf 22282304}
15	ice gsp rate	Dataset {360/Inf 22282304}
16	lov	Dataset (300/111, 22202304)
17	lev 2	Dataset (1)
10	lev_2	Dataset (1)
10	lev_2_blids	Dataset (1, 2)
20	lev_5	Dataset (1)
20	lev_bpds	Dataset (1, 2)
22	ncells	Dataset (17, 2)
22	DEW	Dataset (260/lpf 22282304)
23	piw rain gan rate	Dataset {360/Inf 22282304}
24	ram_gsp_rate	Dataset {360/Inf 22282304}
25	show_gsp_rate	Dataset {360/Inf 22282304}
20		Dataset [260/Inf 22202304]
2/	time	Dataset (360/1117, 22282304)
20	ume	Dataset (3)
29		Dataset (360/lpf 22282204)
30	z_poi	Dataset {300/INT, 22282304}

- A data file contains a set of variables
- Variables have different sizes
- Most dataset values are associated with a position in the grid
- In the application, variables and dimensions must be attached to each other, because grid is located in an external file

Adaptive Tiering Prototype

Based on HDF5-VOL implementation

- svn co https://svn.hdfgroup.uiuc.edu/ hdf5/features/vol/
- Published under LGPL3 on GitHub
 - https://github.com/ESiWACE/esdm
- Separates Metadata and Data
 - Metadata on Lustre
 - Data on RAM, SSD, Lustre
- Writes/Reads data to/from best fitted storage tier

NetCDF Performance Benchmark Tool

- Developed at DKRZ
- Written in C
- Published on GitHub under LGPL License
 - https://github.com/joobog/ netcdf-bench
- Mimics scientific data
 - Data is written in time steps

Figure: Data geometry (3:6:4:3)

NetCDF-Bench Example Output

- Г								
1	\$ mpiexec -n 1 ./ben	chtool						
2	Benchtool (datatype:	int)						
3	Data geometry (t:x:y:	z x sizeof(type))	100:100:100:10 x 4	bytes				
4	Block geometry (t:x:)	<pre>/:z x sizeof(type))</pre>	1:100:100:10 x 4	bytes				
5	Datasize		4000000	bytes		(40.0 MB)		
6	Blocksize		400000	bytes		(400.0 kB)		
7	I/O Access		independent					
8	Storage		contiguous					
9	File length		fixed					
0	File value		no					
1					min	avg	3	max
2	benchmark:write	Open time			0.2811507931	0.2811507931	0.281150	7931 secs
3	benchmark:write	I/O time			0.1901479111	0.1901479111	L 0.190147	9111 secs
4	benchmark:write	Close time			0.3576489800	0.3576489800	0.357648	9800 secs
5	benchmark:write	I/O Performance (w/o	open/close)		200.6173638152	200.6173638152	2 200.617363	8152 MiB/s
6	benchmark:write	I/O Performance			46.0185526612	46.0185526612	46.018552	6612 MiB/s
- L								

Features

- Semi-automatic domain decomposition
- Independent/Chunked/Collective I/O
- Pre-filling with fill value
- Limited/Unlimited dimensions support
- Aggregates results
 - Measures Open/IO/Close times
 - Computes I/O performance
 - Provides min/avg/max values for each measurement

2017-09-26

17/23

Experiment Setup

- Experiments were conducten on Mistral (HPC of DKRZ)
- Storage technologies used in the experimentes are RAM, SSD, HDD-based Lustre
 - RAM peak performance about 4GB/s
 - SSD peak performance about 500 MB/s
 - Lustre peak performance is about 450 GbB/s
- Nodes: 1, 2, 4, 8, 16
- Processes: 1, 2, 4, 8, 16, 36
- Datasize in [MiB]: 2, 16, 128

Experiment with Adaptive Tiering Read

Read

Each facet shows the measurements for a different number of nodes (columns) and varying checkpoint size (rows).

Eugen Betke, Julian Kunkel, Jakob Luettgau (DKRZ)

2017-09-26 19/23

Experiment with Adaptive Tiering Write

Write

Each facet shows the measurements for a different number of nodes (columns) and varying checkpoint size (rows).

Eugen Betke, Julian Kunkel, Jakob Luettgau (DKRZ)

2017-09-26 20/23

Table Of Content

1) Shared NetCDF Grids

- Local vs. Shared NetCDF Grids
- NetCDF External Links

2) Grid I/O on Exascale HPC

- Introduction: Adaptive Tiering Approach
- Evaluation
- Results

2017-09-26

21/23

Discussion

- Local vs. shared Grids
 - Save storage space
 - Can be moved to fast storage tiers for fast loading
- Intelligent middleware
 - Redirects automatically object I/O (e.g. access to variables) to optimal storage tiers
 - Transparent to the user/application

Discussion

- Shared Grids
 - Do we really need grid sharing in NetCDF?
 - How many people need such a feature NetCDF?
 - Shall it a default feature in NetCDF?
- I/O performance of unstructured grids on exascale HPC
 - What do you think, is loading/storing grids a problem, in respect to I/O performance, or is it exaggerated in this presentation?