Research work

Initial eveluation

Summary and future work

Reduction of Data Sets Through High-Level I/O Interfaces

Yevhen Alforov, Michael Kuhn, Thomas Ludwig

Deutsches Klimarechenzentrum GmbH, Hamburg, Germany Universität Hamburg, Hamburg, Germany

September 26, 2017

Big Storage project

- BigStorage is a European Training Network (ETN)
 - Main goal is to train future data scientists
- Focus on performance and energy consumption
- Consortium with ten partners
 - Seven research centers/universities
 - Three large companies
- Three associated partners from industry
- 15 Early Stage Researchers (ESRs)

Research wo

Initial eveluation

Summary and future work

ENERGY

Big Storage project

Data Science

Big Data, Statistics, Machine Learning, Visualization, Data Bases, HPC

HPC and Cloud Convergence

I/O middleware, code-data co-location, elasticity, relaxed semantics, guided I/O

Storage Devices

NVRAM, High capacity Flash, Large Disk, Integrated Photonics

Introduction and motivation	Research work	Initial eveluation	Summary and future work
	000	00000000	0

Introduction

Motivation and problem statement:

- Enormous volumes of data sets are produced
- Additional disks for more storage space are needed
- Hardware has to be procured and operated additional costs
- Energy consumption increase and CO₂ emission

Straight-forward solution:

- Data reduction techniques leveraging:
 - Data compression and deduplication
 - Discrete cosine transform and Fourier transform
- Benefits:
 - Storage capacity optimization
 - Network bandwidth reduction
 - Operation costs minimization and energy saving
 - Saving the environment

LESS DATA \Rightarrow LESS STORAGE HARDWARE \Rightarrow LESS ENERGY COSTS

German Climate Computing Center (DKRZ) example

- Investment costs for 1PB of storage ≈100 000 €
- 1 PB of storage needs 3 kW of power
- 1 kWh of energy costs ≈0.14 €
- Annual electricity costs ≈ 3 680 €
- almost 200 000 € per year for electricity alone (for 54 PiB)
- Not included costs for:
 - Maintenance (approximately 15% of investment costs)
 - Tapes for long term archives

Data reduction deployment in common HPC I/O stack

You can deploy data reduction techniques on **lower (system)** or **higher (application)** level of HPC I/O stack:

Data Reduction usage on higher levels of HPC I/O stack is advantageous!

Summary and future work

Drawbacks and benefits of DR deployment in I/O stack

	SYSTEM LEVEL	APPLICATION LEVEL	
	Uncertainty	Clarity	
Č	due to the lack of access to	insight into the code and	
BA	application-specific semantical	requirements of applications is	
	information (e.g., data structures,	needed for tuning the	
NR/	important variables, etc.) only	performance of data reduction	
	lossless reduction can be considered	technique	
	Transparency	Flexibility	
	no needs to modify applications,	semantical information is easily	
Ξ	even if they are very diverse or	accessible, hence more reduction	
Ē	don't use a common I/O	techniques can be leveraged	
	software stack	(even for specific portions of data)	

Design of EEDR framework (under development)

Yevhen Alforov

Reduction of Data Sets Through High-Level I/O Interfaces

Introduction and motivation	Research work	Initial eveluation ●0000000	Summary and future work

Evaluation setup

Cluster operated by FS Lustre

ArduPower wattmeter

Dataset and workload

 17 GB data set of 3D ecosystem model for the North Sea ECOHAM (from Climate Science)

Reduction of Data Sets Through High-Level I/O Interfaces

Introduction and motivation	Research work	Initial eveluation	Summary and future work o

Dataset and workload

 14 GB data set of tomography experiments from PETRA III PCO 4000 detector (from High Energy Physics)

Summary and future work

Preliminary evaluation and results for HDF5 filters

Summary and future work o

Preliminary evaluation and results for HDF5 filters

	Initial eveluation	Summary and future work
	00000000	

Runtime of evaluated HDF5 filters

Preliminary evaluation and results for HDF5 filters

Figure: Average CPU utilization with ECOHAM data set

Figure: Average CPU utilization with **PETRA III** data set

Reduction of Data Sets Through High-Level I/O Interfaces

Introduction and motivation	Research work	Initial eveluation 0000000●	$\underset{\bigcirc}{\text{Summary and future work}}$

Outcome

Significant algorithms for the framework are:

- MAFISC (when only compression ration matters)
 - ∎ 0.013 € consumed energy costs for ECOHAM5
 - 0.0065 € consumed energy costs for PETRA III
- LZ4, ZSTD (when runtime, energy or CPU are also important)
 - 0.0039 € consumed energy costs for ECOHAM5
 - 0.0007/0.00098 € consumed energy costs for PETRA III

Summary and future research work

Summary:

- Amount of reduced data depends on the structure of data
- **Trade-off** between compression ratio and energy consumption
- Different approaches are appropriate depending on the use case
 - Archival with slower algorithms
 - Parallel I/O should be handled as fast as possible

Future plans:

- Experimenting with application-specific techniques
 - Using semantic information available at the application level
 - Leveraging techniques that are complex and/or expensive to deploy at the system level such as deduplication
- Provide high-level I/O extensions to reduce energy consumption
- Taking into account Big Data applications