

Sirocco – An Overview

Exceptional service in the national

interest

Matthew L. Curry, Ph.D.

Scalable System Software Sandia National Laboratories Albuquerque, NM, USA mlcurry@sandia.gov

IODC 2016

Ø

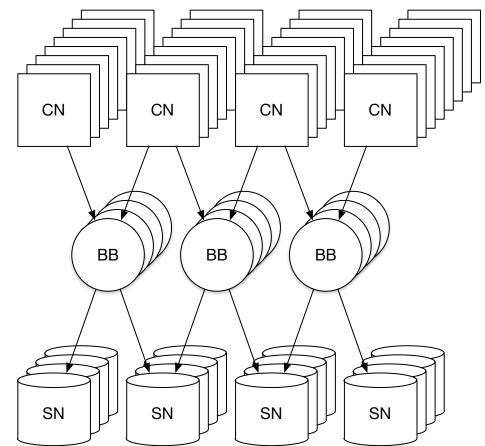
June 23, 2016

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

What is Sirocco?

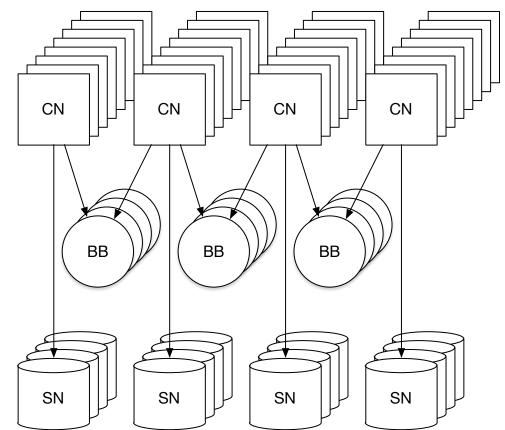
- A low-level distributed object store for large HPC installations
- Not a file system! Think RADOS, not files
 - Lightweight philosophy Bring your own services
 - Naming, consistency management
- File system/storage API crafted against Sirocco
 - POSIX, HDF5, S3...
- A new entry in the field of non-deterministic storage systems
 - E.g., Zest

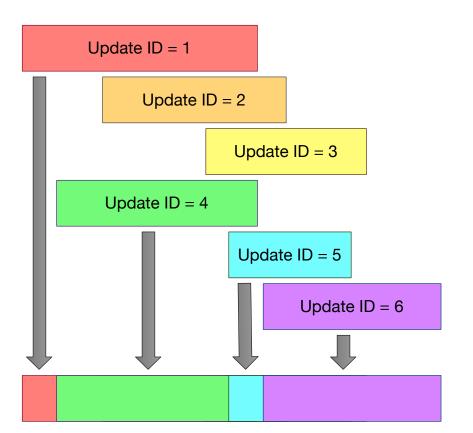
How is Sirocco unique?



- Targeted for massive write workloads
 - Checkpoints All write entire memory ASAP
 - Some can be allowed to fail
 - Often, nothing can happen until checkpoint completes
- Clients choose best locations to write data
 - Local optimization of write performance
 - Write to closest, least burdened servers known
 - Cost: No way to "look up" location of data
 - Benefit: Unreasonably fast checkpoints
- System manages safety/space by moving objects
 - No client notification

Current state of the art

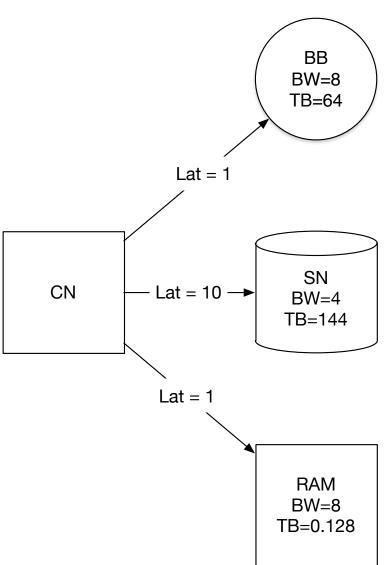

- Burst buffer is a layer of fast cache between compute nodes and file system
- Burst buffer is sized to accommodate n checkpoints, which are asynchronously bled to slow store
- In some models, all I/O is performed through burst buffers


Sirocco model

- Burst buffers are a filesystem-level storage resource
 - May be used if beneficial
- Write wherever there is capacity/bandwidth
- System reshuffles data as required
- Because data can move, possible to temporarily introduce resources
 - Compute nodes w/ RAM for storage

How do clients write?

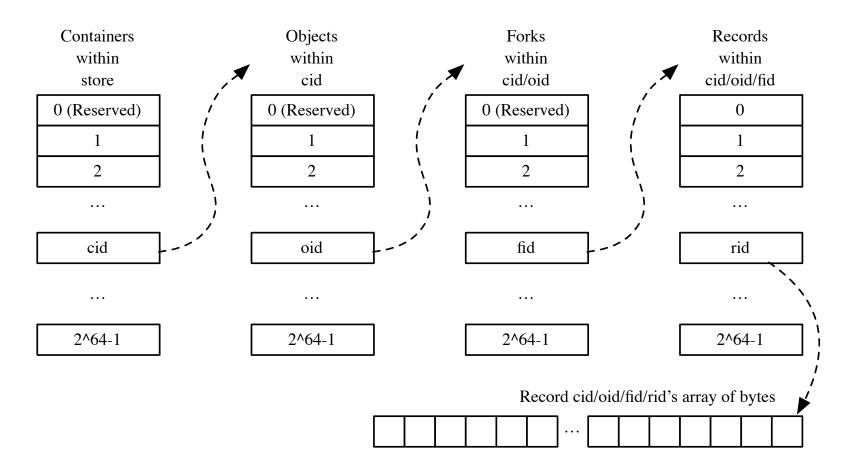
- Step 1: Determine an update ID
 - Update IDs are per-extent logical clocks specified at write time
 - Used to order conflicting writes
 - Trivial for file-per-process or non-overlapping m-to-n checkpointing, both common in NNSA applications
 - More complex write patterns will want to employ a service to manage



How do clients write?

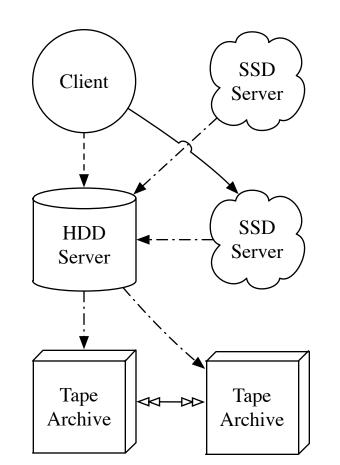
Sandia National Laboratories

- Step 2: Determine a target
- Select a "fit" target from a local cache
 - Use a membership protocol (e.g., SWIM, SAP2P, etc.) to learn
 - Servers piggyback health/weather back to clients
- Client select target(s) fit for purpose
 - Latency-sensitive workloads use IOPS
 - Bandwidth-sensitive workloads can use bandwidth
 - Both may prefer low latency


How do clients write?

- Steps 3-5: (Don't worry, they're easy)
- Set resilience attribute at target
 - Currently number of copies on stable storage
 - Nothing preventing future abstract value
- Write
- Send sync as appropriate to ensure chosen resilience
 - Sirocco takes responsibility

Sirocco Data Model

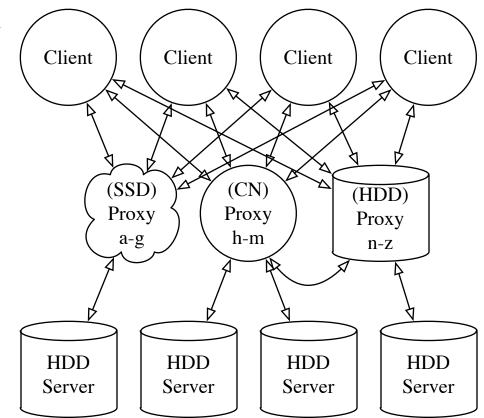


Karakoyunlu et al., "Toward a Unified Object Storage Foundation for Scalable Storage Systems." Proceedings of the 5th Workshop on Interfaces and Architectures for Scientific Data Storage (IASDS 2013).

How does Sirocco manage data?

- Data moves according to system need, without central management
 - Replication For resilience
 - Migration For load balancing, hierarchical storage management
 - Eviction For cold data with replicas or data with limited lifetime

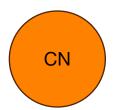
There is <u>no</u> coherent, central <u>index</u> for data.

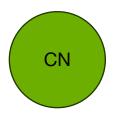

- Generally: Search.
 - Sun et al. "A Lightweight Data Location Service for Nondeterministic Exascale Storage Systems." ACM TOS, July 2014
 - Sun et al. "A Hierarchical, Triangle-Based Data Location Service for Nondeterministic Exascale Storage Systems." ACM TOS, submitted.
- Not a big concern for checkpoints
 - Checkpoint-restart data is not often read immediately
 - Possible to stage data asynchronously

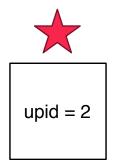
How do clients read?

There is no coherent, central index for data.

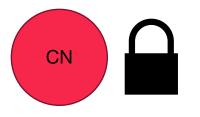
- Clients can cooperatively choose proxies
- Designated storage servers used to manage objects
 - Not necessarily store them
- May be good for metadata
- Future: pNFS-style maps?

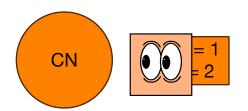


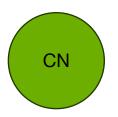

Concurrency Control

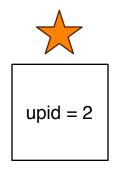


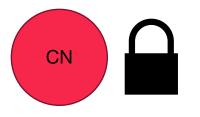
- Two widely used methods
 - Pessimistic (i.e., locking)
 - Optimistic (i.e., rollback on conflict)
- Optimistic is provided based on knowledge of update ID.
 - See Karakoyunlu et al. for more information.
- Pessimistic can be provided by external locking library, or by leveraging triggered batches.
 - General; interesting experimentation/optimization for different locking use cases
- Single records on particular storage servers are used to manage synchronization
 - No migration of these records
 - Tendency is to use RAM nodes for these

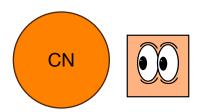


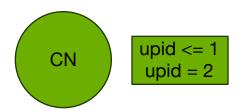


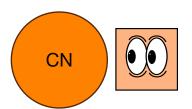


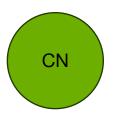

Sandia National Laboratories



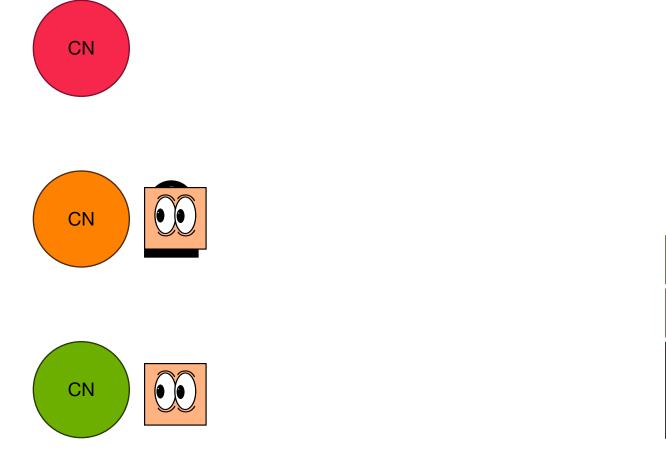








upid <= 1 upid = 2	
upid = 2	



upid <= 1 upid = 2
upid <= 1 upid = 2
upid = 1

upid <= 1 upid = 2 upid <= 1 upid = 2

Conclusion

- Sirocco represents a brand new strategy
 - Make writes go as fast as possible under changing system conditions
 - Down with oppressive central control!
- A new object store to host a range of file systems
 - Server- or Client-funded services
- An opportunity to try new things
 - Proxy-based optimizations
 - Variable-length records for rich metadata
 - Storage-based locking primitives

Acknowledgements

- Lee Ward
- Geoff Danielson
- Jay Lofstead

Sirocco – An Overview

Exceptional service in the national

interest

Matthew L. Curry, Ph.D.

Scalable System Software Sandia National Laboratories Albuquerque, NM, USA mlcurry@sandia.gov

IODC 2016

7

June 23, 2016

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.