

HPC storage @ CSCS

Stefano Gorini and Colin McMurtrie, CSCS June 23rd, 2016

Online Filesystems

Mission Critical Filesystems

Filesystem	Size
/users	86 TiB
/apps	58 TiB

- optimized for small files
- GPFS 3.5
- blocksize: 256 KiB
- metadata on SSD in double copy
- files < 128 KiB on inodes</p>

HPC storage @ CSCS 3

ETH zürich

Online Filesystems with Backup - /project

Filesystem	Size
/project	5.8 PiB

- optimized for big files
- GPFS 3.5
- blocksize: 1 MiB
- metadata on SSD in double copy
- files < 256 KiB on inodes</p>

Quota based on research proposals

- 2 EMC VNX8000
- 37 disk enc. (60 slot each)
- RAID6 + Hot spares
- 4 TB NL-SAS disks
- SSDs for Metadata

HPC storage @ CSCS 4

Net: 5.94 PiB Raw: 8.65 PB 2163

Online Filesystems with Backup - /store

- GPFS 4.1
- 2 Tiers
- Policy based on access time
- Quota based on contracts
- Previous size: 2.6 PiB

- 1 EMC VNX8000
- 8 disk enc. (60 slot each)

3412

- RAID6 + Hot spares
- 4 TB NL-SAS disks
- SSDs for Metadata

Raw: 15.21 PB

- 3 NetApp E5600
- 18 disk enc. (60 slot each)
- parity-declustering RAID
- 6 TB NL-SAS disks

HPC storage @ CSCS 5

Net: 10.34 PiB

Online Filesystems - /scratch/daint

Other Storage Systems

Filesystem	Size
/scratch/santis	167 TiB
/scratch/dora	904 TiB
/scratch/brisi	226 TiB

- Test and Development Systems for Cray Sonexion 1600
- Cray Sonexion 2000 for Dora and its TDS systems
 - Lustre 2.1
 - Declustered RAID (GridRAID)
 - New Expansion Storage Units
 - 4 OSSs with 2 OSTs each one
 - 41 disks (113 TiB) per OST
 - stripe_count=1

Management Infrastructure (Nagios, Ganglia, Puppet, Greylog, custom solutions...)

HPC storage @ CSCS 8

6172

Net: 15.51 PiB Raw: 22.84 PB

Data Services

Data Transfer Service

- Data Movers Services
 - GridFTP (4 nodes cluster)
 - GPFS AFM for HBP
 - Between CSCS and EPFL
 - To be extended to Juelich, Cineca and BSC.

Backup/Archive Service

- 3 TSM Servers + 1 spare
- IBM TS3500 Tape Library (18257 slots)
- 28 drives (24 LTO5 + 4 LTO6)
- 12510 LTO5 + 100 LTO6 cartridges
- Mainly used with mmbackup for GPFS
- 5 Storage Agents
- Big DB2 databases (~ 400GB) to keep metadata infos

Backup/Archive Service

HPC storage @ CSCS | 12

ETH zürich

Customized Solutions

MeteoCH

Filesystem	Size	
/workspace	223 TiB	
Albis /opr	18 TiB	
Lema /opr	18 TiB	
Escha /scratch	73 TiB	
Kesch /scratch	73 TiB	

- Cray Sonexion 1300 for old /workspace
- Cray Lustre for old /opr and new /scratch
- built on NetApp hardware

HPC storage @ CSCS | 14

Description of the Problem

FIELDEXTRA (pre/post processing Fortran tool) slowdown

Condition	zone_reclaim_mode	Number of Runs	Average [s]	Standard dev [s]
2	0	15	198.533	12.928
3	1	38	440.921	337.741
4	0	62	193.677	27.617
5	0	161	499.379	1133.936
6	0	173	199.08	11.316

Is it the FS?

- Lets try GPFS.....
 - No Variation FIELDEXTRA always perform the same
- So is it Lustre FS storage HW?No

Dedicated Test and Analysis Session

- All the problems are not related to an high load on the Lustre file system
- The kernel parameter reclaim vm.zone_reclaim_mode has a significant effect on the slowdown ("condition 5")
- Running the suite on the same node mitigates the slowdown
- Important Remark:

During the analysis of the Fieldextra process with *perf*, in case of slowdown, Fieldextra was spending a lot of time with the kernel function **clear_page_c_e**:

Samples: 1M of event 'cycles', Event count (approx.): 854374192198 13.12% Fieldextra [kernel.kallsyms] [k] **clear_page_c_e** 7.58% fieldextra fieldextra_12.2.0_gnu4.9.3_opt_omp [.] spumb_c_ 7.35% fieldextra [kernel.kallsyms] [k] compaction_alloc

Solution

- MCH redesigned the initialization of data arrays (~40 GB on disk) by doing this initialization stepwise
- With this new version of fieldextra no significant performance fluctuation has been seen → More testing is underway to confirm these results
- Running the test case during more than 12 hours without cache cleaning on all nodes ("condition 5")
- The new initialization even improves the performance on top of that:

"The test case ~30% faster than the fastest runtime with the current operational executable"

Q & A

sgorini@cscs.ch - colin@cscs.ch