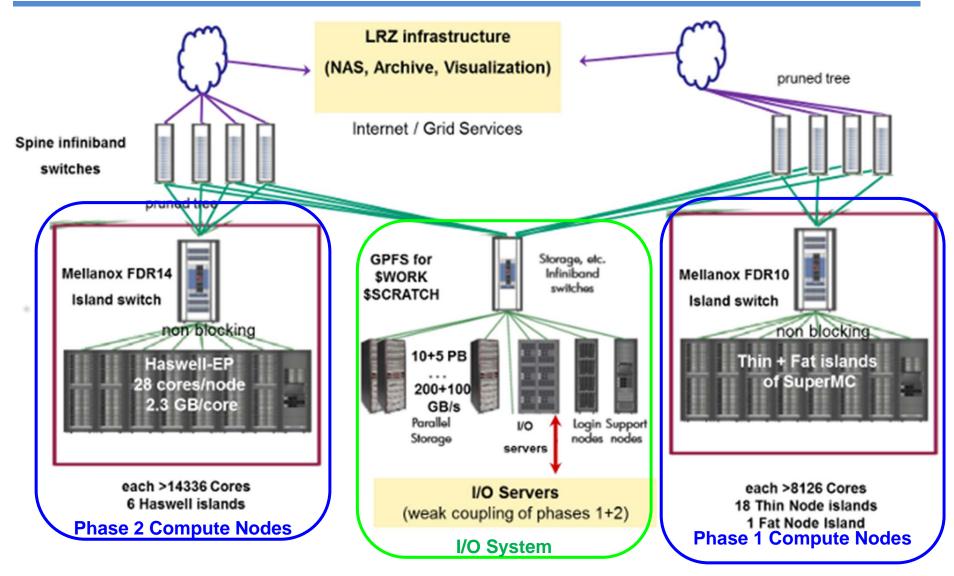
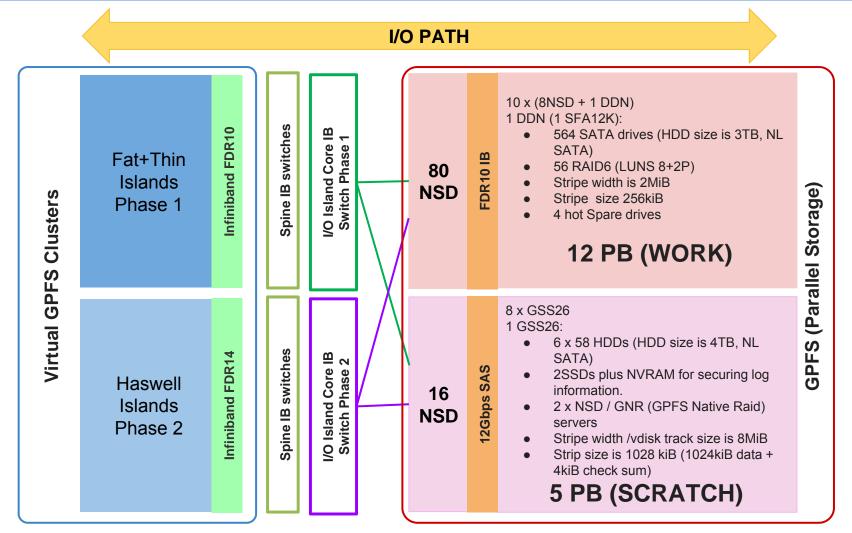
Leibniz Supercomputing Centre of the Bavarian Academy of Sciences and Humanities

Sandra Méndez. HPC Group, LRZ. June 23, 2016

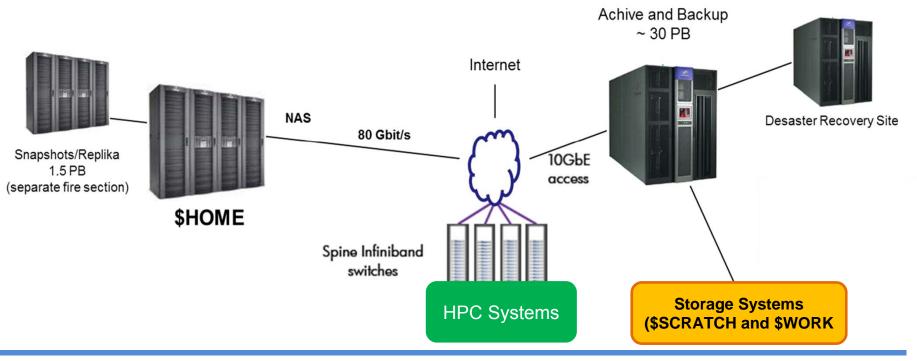
- SuperMUC supercomputer
- User Projects
- Monitoring Tool
- I/O Software Stack
- I/O Analysis Tool
- Analyzing I/O Problems
- Conclusions



- Member of the Gauss Centre for Supercomputing (GCS). Tier-0 centre for PRACE, the Partnership for Advanced Computing in Europe.
- 2012 SuperMUC Phase 1 and 2015 SuperMUC Phase 2. Total Peak Performance 6.4 PFlop/s.



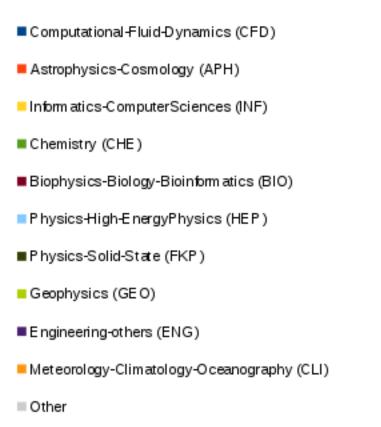
The I/O PATH on SuperMUC - Parallel Storage (WORK and SCRATCH filespace)

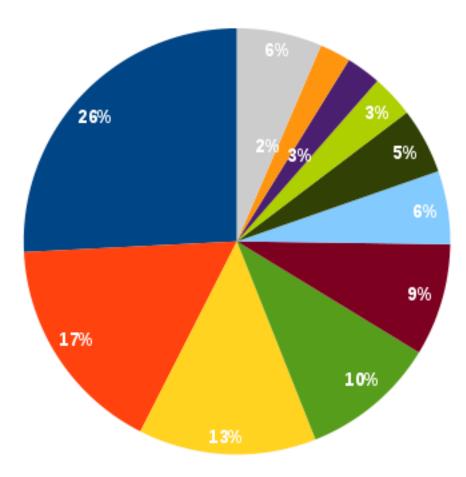

The Global Filesystem HOME (NFS)

- Available on all HPC cluster systems (environment variable \$HOME)
- Shared area for all user accounts in a project

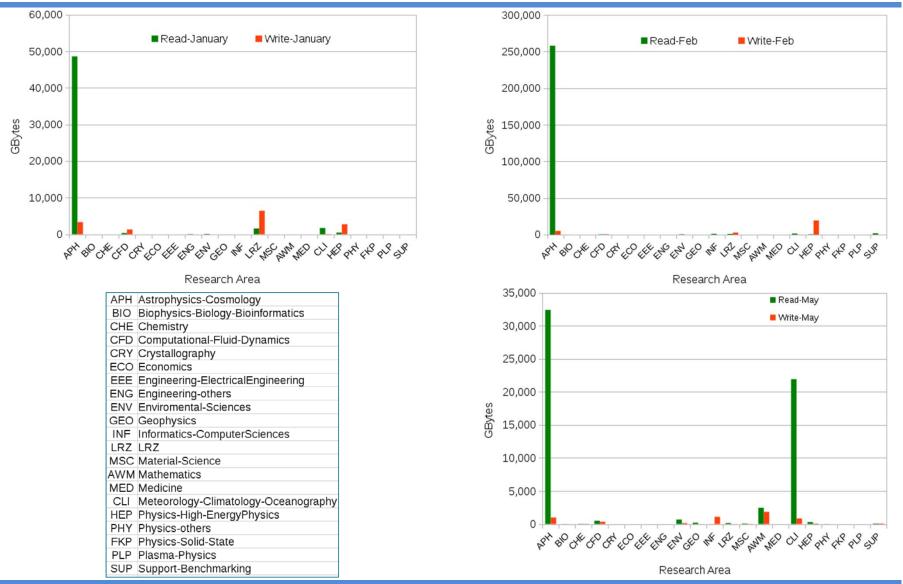
Very reliable

- user-restorable snapshots (last 10 days)
- automatic data protection by LRZ

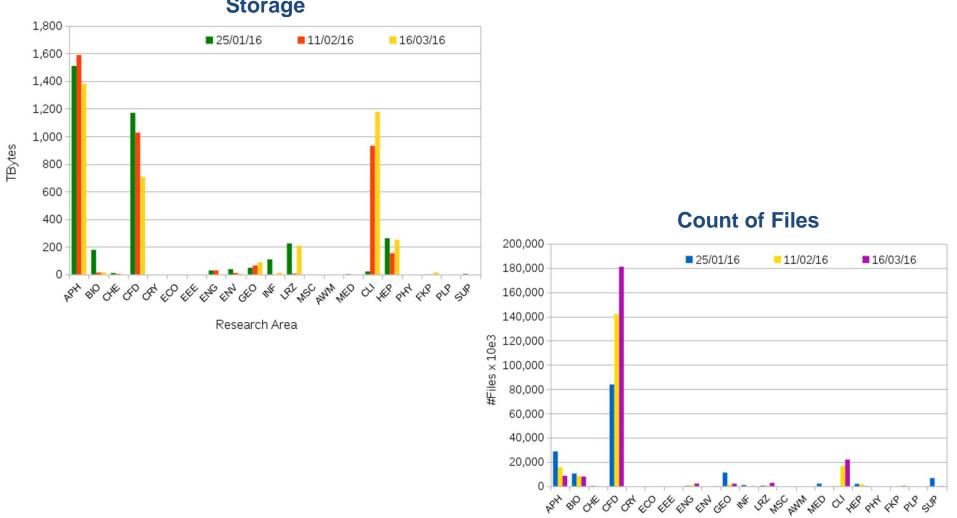




- SuperMUC supercomputer
- User Projects
- Monitoring Tool
- I/O Software Stack
- I/O Analysis Tool
- Analyzing I/O Problems
- Conclusions



Data Transferred by Research Area



17

Storage and Files by Research Area – rz **SCRATCH** filespace

Storage

Research Area

I/O Libraries

• HDF5 15%, NetCDF or PnetCDF 10%; POSIX, MPI-IO, or an I/O library locally installed 75%.

Storage Parallel

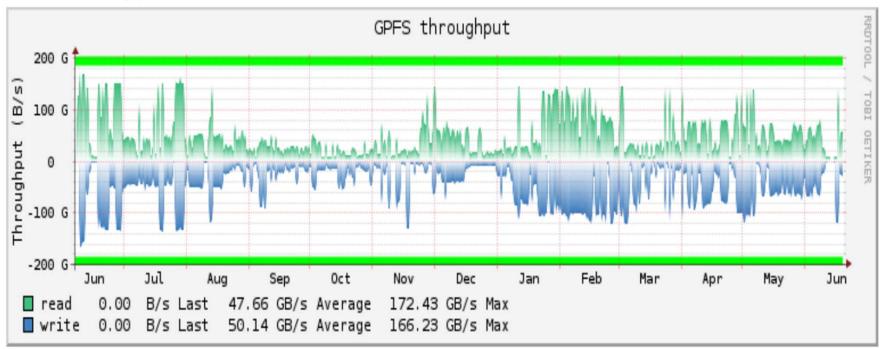
- WORK (70% Capacity) -> 5 fold increase
- SCRATCH (80% Capacity) -> 8 fold increase

Checkpointing and large scale output with a connection to a visualization cluster.

Checkpointing (for the Large-Scale Projects):

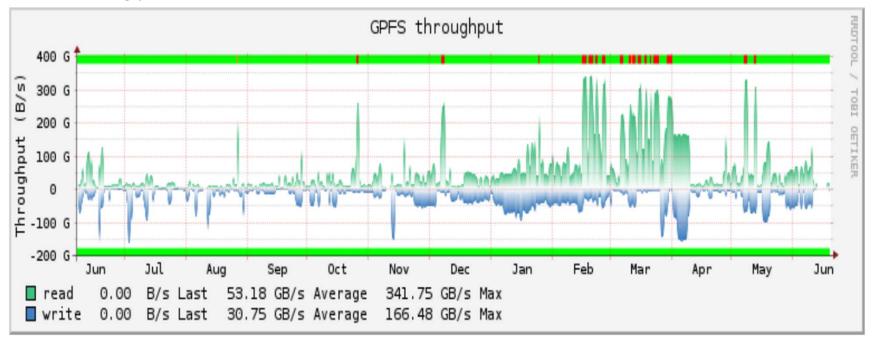
Periods: 5 min to 8 hours

Size:	100 GB -> 38%
	1TB -> 10%
	5TB -> 7%
	10TB -> 1%
	35TB -> 2%
	70TB -> 1%
	< 100GB -> 41%


- SuperMUC supercomputer
- User Projects
- Monitoring Tool
- I/O Software Stack
- I/O Analysis Tool
- Analyzing I/O Problems
- Conclusions

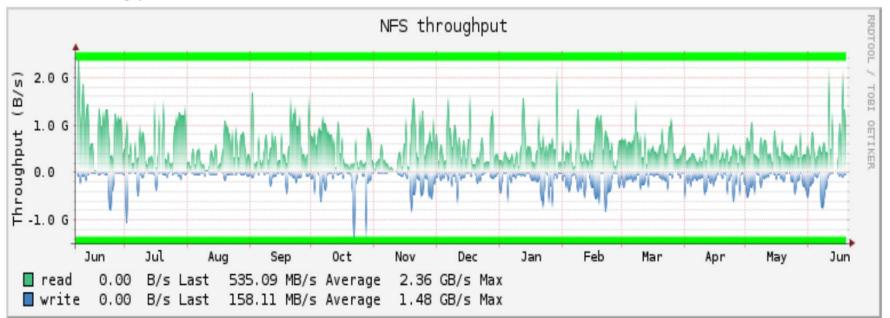
One Year (06.06.15 19:01 - 20.06.16 19:01)

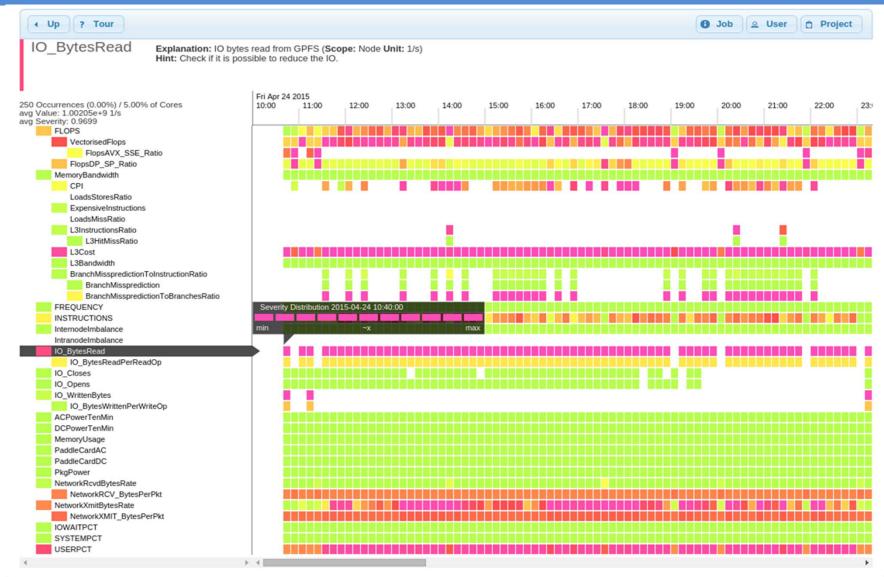
Datasource Throughput



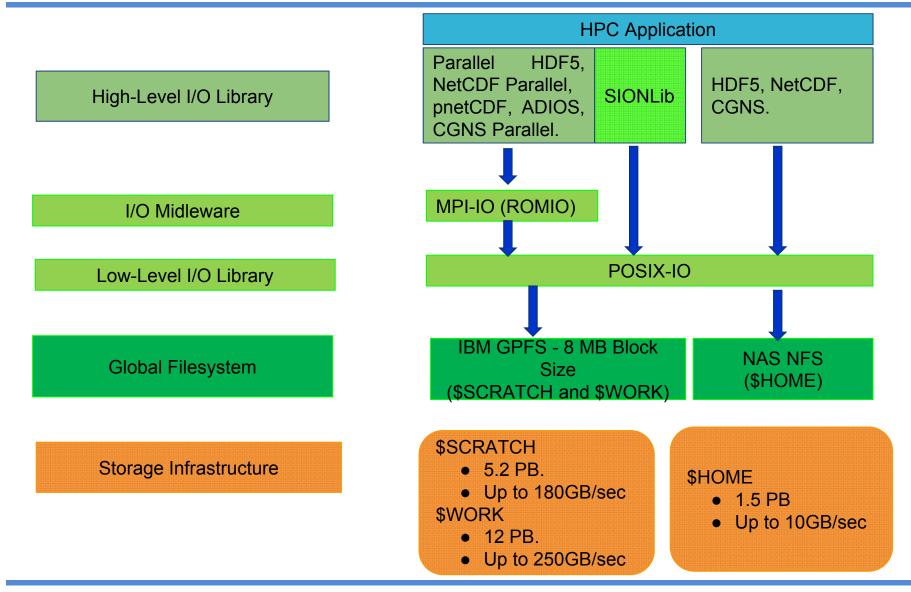
One Year (06.06.15 19:00 - 20.06.16 19:00)

Datasource Throughput




One Year (06.06.15 18:59 - 20.06.16 18:59)

Datasource Throughput



- SuperMUC supercomputer
- User Projects
- Monitoring Tool
- I/O Software Stack
- I/O Analysis Tool
- Analyzing I/O Problems
- Conclusions

The I/O Software Stack on SuperMUC

- IBM Parallel Environment (MPI-IO implementation a ROMIO version)
- Intel MPI (MPI-IO implementation a ROMIO version)
 - ► Set the I_MPI_EXTRA_FILESYSTEM environment variable to on to enable parallel file system support.
 - ➤Set the I_MPI_EXTRA_FILESYSTEM_LIST environment variable to request native support for the specific file system.

ROMIO Hints

Data Sieving:

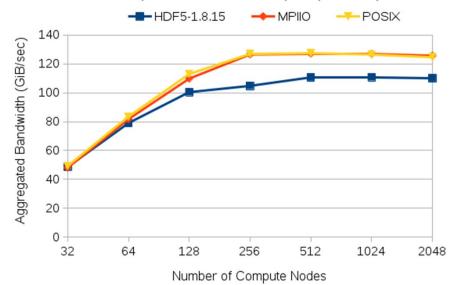
- ind_rd_buffer_size
- ind_wr_buffer_size
- romio_ds_read
- romio_ds_write

Collective buffering (Two-Phase I/O)

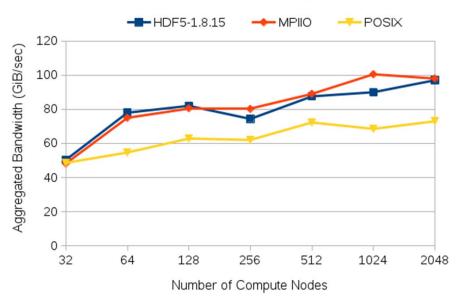
- cb_buffer_size
- romio_cb_read
- romio_cb_write

Evaluation of MPI-IO Hints in SuperMUC

Exp.	MPI Processes	Compute Nodes	Access Pattern	Request Size	Hints	Transfer Rate(GiB/sec)
1	512	32	Sequential	1 MiB	<pre>romio_cb_read = automatic romio_cb_write = automatic romio_cb_read = disable romio_cb_write = disable independent I/0</pre>	<pre>write = 25.92 read = 23.80 write = 75.34 read = 67.58 write = 80.39 read = 69.62</pre>
2	512	32	Strided	1 MiB	<pre>romio_cb_read = automatic romio_cb_write = automatic romio_cb_read = enable romio_cb_write = enable independent I/0</pre>	<pre>write = 1.63 read = 17.74 write = 25.49 read = 26.10 write = 5.15 read = 12.60</pre>
3	512	32	Sequential	256 MiB	<pre>romio_cb_read = automatic romio_cb_write = automatic romio_cb_read = disable romio_cb_write = disable independent I/0</pre>	<pre>write = 74.48 read = 46.67 write = 83.37 read = 65.88 write = 82.29 read = 64.22</pre>
4	512	32	Strided	256 MiB	<pre>romio_cb_read = automatic romio_cb_write = automatic romio_cb_read = disable romio_cb_write = disable romio_cb_write = enable romio_cb_write = enable independent I/0</pre>	<pre>write = 71.12 read = 41.80 write = 77.22 read = 70.21 write = 24.81 read = 24.90 write = 71.25 read = 67.71</pre>


٢z

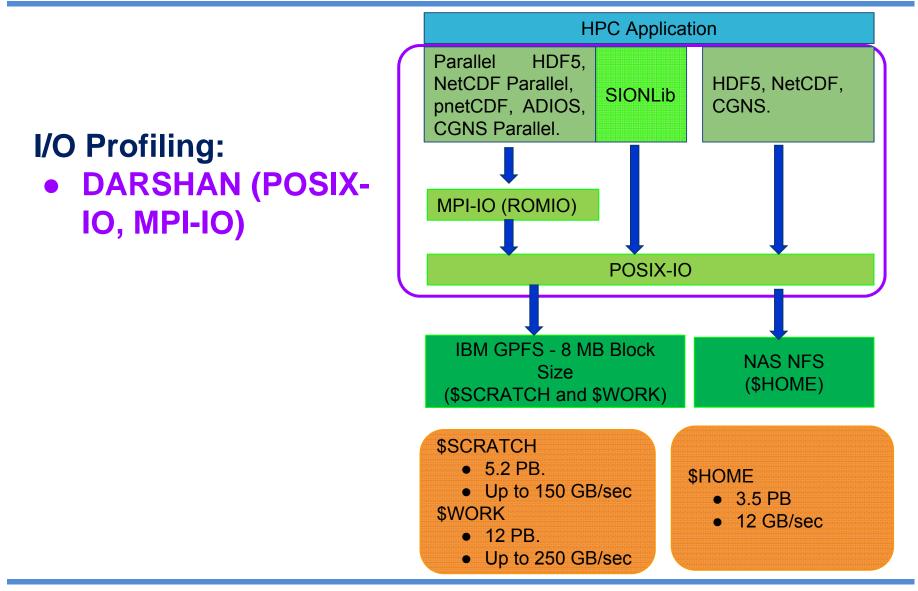
GPFS Scalability on SuperMUC: Weak scaling up to 4 Islands on SCRATCH


IOR Data Transfer Rate - SuperMUC - \$SCRATCH - GPFS

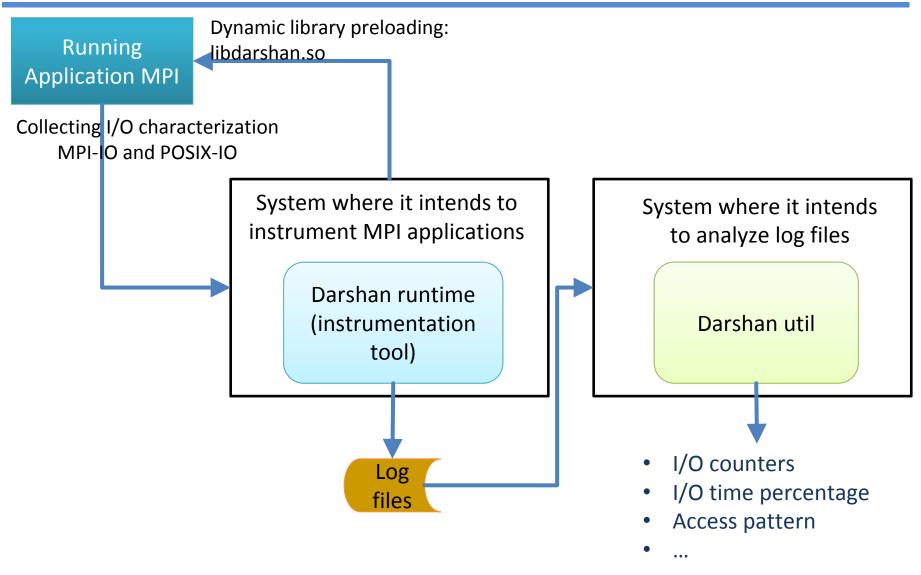
Read - 64 GB per MPI Proc - 1 MPI proc per Compute Node

Islands of Thin Nodes. Peak Performance 130 GB/sec (From Phase 1 to SCRATCH).

IOR Data Transfer Rate - SuperMUC - \$SCRATCH - GPFS Write - 64 GB per MPI Proc - 1 MPI proc per Compute Node



- SuperMUC supercomputer
- User Projects
- Monitoring Tool
- I/O Software Stack
- I/O Analysis Tool
- Analyzing I/O Problems
- Conclusions



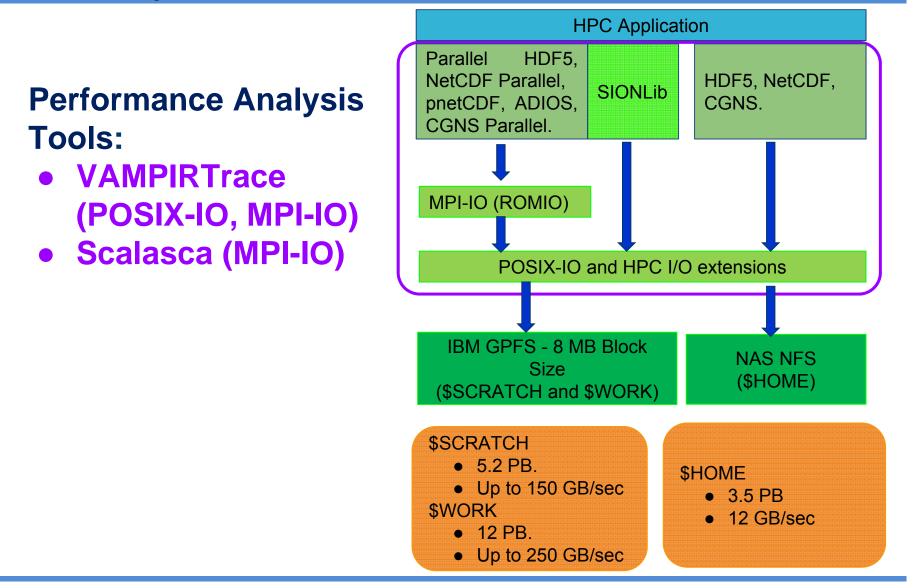
 To make use of Darshan in its version 2.3 and 3.0, the module appropriate must be loaded.

```
module load darshan
```

 Set up the variable FORTRAN_PROG in "true" if the program is a Fortran program and false if it's not.

FORTRAN_PROG=true

- Load the appropriate library.
 export LD_PRELOAD=`darshan-user.sh \$FORTRAN_PROG`
- Set up Darshan job identifier with loadleveler job identifier.
 export JOBID_LL=`darshan-JOBID.sh \$LOADL_STEP_ID`
- Set up environment variable DARSHAN_JOBID to environment variable name that contain the job identifier of loadleveler.

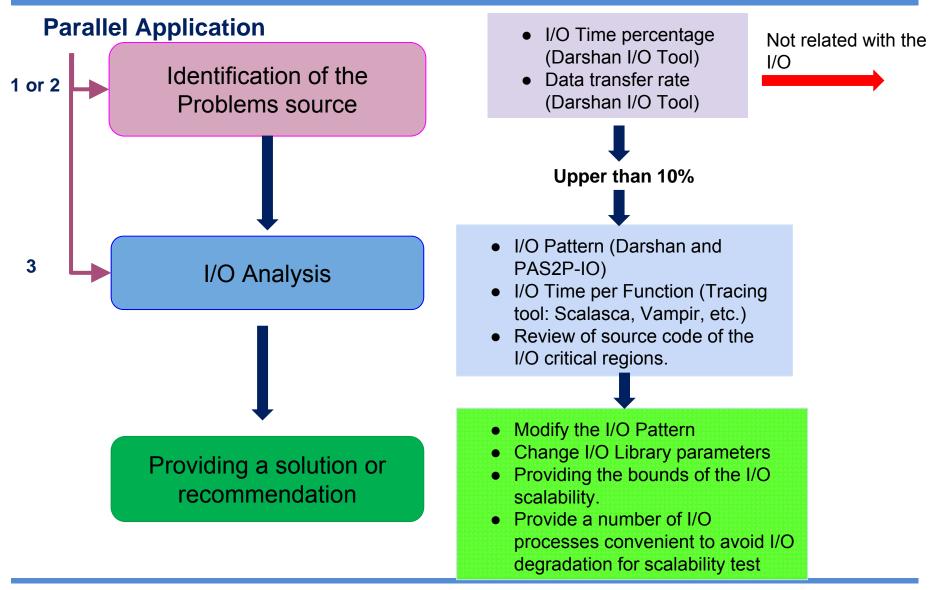

```
export DARSHAN_JOBID=JOBID_LL
```

- Set up Darshan log path export LOGPATH_DARSHAN_LRZ=`darshan-logpath.sh`
- Darshan Splunk format

darshan-splunk.sh \$JOBID_LL \$LOGPATH_DARSHAN_LRZ \$LOADL_STEP_ID

Performance Analysis Tools that support I/O analysis

- SuperMUC supercomputer
- User Projects
- Monitoring Tool
- I/O Software Stack
- I/O Analysis Tool
- Analyzing I/O Problems
- Conclusions



- 1. I/O Patterns
 - Time-out error
 - Slow I/O performance
- 2. MPI-IO Hints configuration
 - Slow I/O performance for Collective operations
- 3. I/O Scalability
 - Requirement for large scale parallel applications

Experimental Environment:

- An Island of thin nodes (512 compute nodes)
- 2 processors per compute node and 8 cores per processor.
- Size of shared memory per node is 32 GBytes (2 GBytes per core).
- \$WORK filespace (GPFS version 3.5). Up to 180 GB/s.
- Block size equal to 8,388,608 bytes (8MiB) and a minimum fragment size of 262,144 bytes.
- IBM MPI 1.3, NetCDF 4.3.3, Scalasca 2.2.2 and Darshan 2.3.1.

- Error Report: Time-out or Slow performance.
- Master-Worker Application (Workers perform the I/O).
- NetCDF Serial (POSIX-IO).
- Darshan report the I/O time of 90%

File with more impact (Read Only)	Size
 AK135f_5s_fwd_8MB/MZZ/Data/ordered_output.nc4 AK135f_5s_fwd_8MB/MXX_P_MYY/Data/ordered_output.nc4 AK135f_5s_fwd_8MB/MXZ_MYZ/Data/ordered_output.nc4 AK135f_5s_fwd_8MB/MXY_MXX_M_MYY/Data/ordered_output.nc4 AK135f_5s_bwd_8MB/PZ/Data/ordered_output.nc4 AK135f_5s_bwd_8MB/PX/Data/ordered_output.nc4 	70GB 70GB 104GB 104GB 70GB 104GB
======================================	522 GB

 Scalasca profile shows that the problem is related with the function load_strain_point_interp (I/O time of 70%) in the call nc_getvar() for FWD in the readfields routine.

Timespan from first to last access on files shared by all processes read write 2 All processes 00:05:00 00:10:00 00:15:00 00:20:00 00:25:00 00:30:00 00:35:00 00:00:00 hours:minutes:seconds Data Transfer Per Filesystem Write Read File System MiB Ratio MiB Ratio 1.00000 /gss/scratch 0.00000 0.00000 1400386.82951 /home 18.55555 1.000002.076100.00000

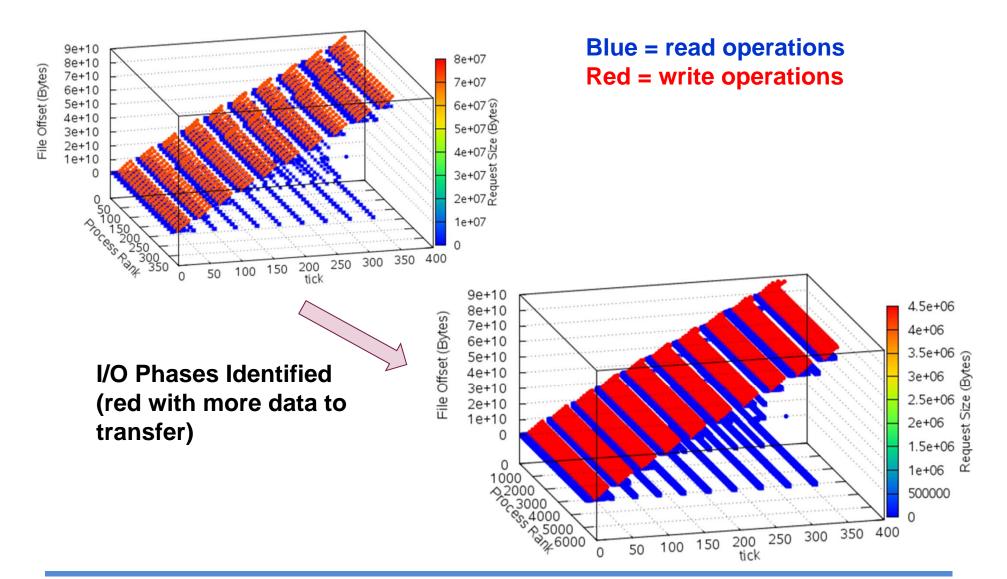
Darshan reports that the application is moving 1.5 TB or 2 TB, usually each process is moving 6GB per file for file sizes of 104 GB and 4GB for the file sizes of 70GB.

Timespan from first to last access on files shared by all processes

All processes		write
All proc		
00:0	0:00	Problem: The performance related with read operations (random pattern) which impacts on memory utilized. The data must be read during all the execution. Each worker loads the files in memory because each worker is an I/O process.
		Recommendation: The user must be avoid the random pattern (that is possible) and reduce the number of I/O processes to avoid loads several times the same file.
	D	arshan reports that the application is moving 1.5 if B or 2.1 B, usually each in
		rocess is moving 6GB per file for file sizes of 104 GB and 4GB for the file izes of 70GB.

Experimental Environment:

- An Island of thin nodes (512 compute nodes)
- 2 processors per compute node and 8 cores per processor.
- Size of shared memory per node is 32 GBytes (2 GBytes per core).
- \$WORK filespace (GPFS version 3.5). Up to 180 GB/s.
- Block size equal to 8,388,608 bytes (8MiB) and a minimum fragment size of 262,144 bytes.
- IBM MPI 1.3, Parallel HDF5 1.8.14, and Darshan 2.3.1.


- A Particle-in-Cell Application.
- I/O Problem: I/O Scalability Analysis
- Parallel HDF5.

I/O Call tree

Order	MPI-I/O Operation	Data Access Aspect
1	MPI_File_open	
2	Once only by rank 0.	
	MPI_File_get_size	
3	From seven to twelve times	
	MPI_File_read_at	blocking, noncollective, explicit offset
4	Six times (once for each field)	
	MPI_File_set_view	
	MPI_File_write_at_all	blocking, collective, explicit offset
	MPI_File_set_view	
-	MPI_File_read_at	blocking, noncollective, explicit offset
5	Only for the first seven I/O processes	
-	MPI_File_write_at	blocking, noncollective, explicit offset
6	MPI_File_set_size	
7	MPI_File_close	

Example: I/O Scalability (3)

Application I/O Parameters

I/O Parameter	Values
Global Simulation Size	(x, y, z)
Local Simulation Size	$(x_loc = x, y_loc = y, z_loc = \frac{z}{np})$
Compute Nodes	cn
Simulation step	st
fields	fi
writer processes	wp = cn
Data Size (Bytes)	ds
RequestSize(Bytes)	$rs = x_loc \times y_loc \times z_loc \times ds$
FileSize(Bytes)	$fz = cn \times rs \times st \times fi$
Data per st (Bytes)	$D_{st} = cn \times rs \times fi$
Data per 1 cn per st (Bytes)	$D_{cnxst} = rs \times fi$

MPI-IO operations considering the I/O Parameters

I/O Operation	Count
open	$st \times cn$
write_at_all	$st \times fi \times cn$
write_at	$7 \times st$
set_view	$st \times fi \times cn \times 2$
read_at	$2 \times fi \times st \times$
	$\times cn + 23 \times cn$
get_size	st
set_size	$st \times cn$
close	$st \times cn$

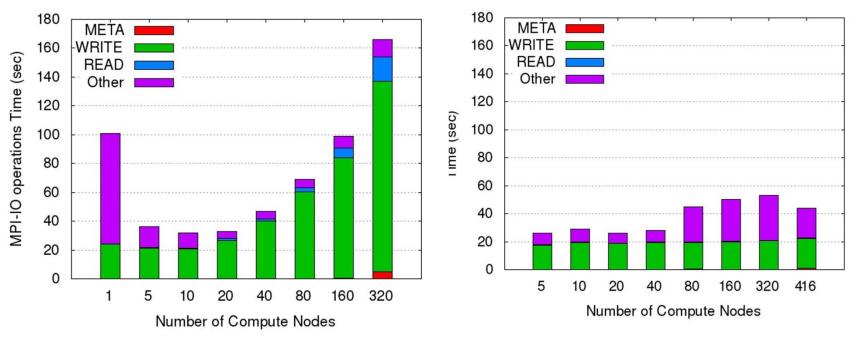
Irz Example: I/O Scalability (4)

Number of Compute Nodes

Number of Processes Local Simulation Size Data per 1 cn per st Compute **Request Size** Nodes (cn) rs (MiB) D_{cnxst} (MiB) np16 (52, 52, 4160)1373.13 8238.75 80 274.63 1647.75 5 (52, 52, 832)10 160 (52, 52, 416)137.31 823.88 20 320 (52, 52, 208)68.66 411.94 40 (52, 52, 104)34.33 205.97 640 80 1280 (52, 52, 52)17.16 102.98 (52, 52, 26)2560 8.58 51.49 160(52, 52, 13)320 25.75 5120 4.29 120000 open 180 META write at all 160 WRITE 100000 write at Count of MPI-IO operations MPI-IO operations Time (sec) READ set view 140 Other read at 80000 get size 120 set size 100 60000 80 40000 60 40 20000 20 0 0 80 160 320 20 40 5 10 5 20 80 160 320 1 10 40

Global Simulation Size is (52,52,66560), File size = 82 GiB, 16 processes per compute node, 8.05 GiB per Simulation Step, 10 step simulation, 6 fields, 128 data size.

Number of Compute Nodes



Example: I/O Scalability (5)

<u>Problem</u>: A scalability problem is produced for the strong scaling. The user writes the same amount of data and only increases the compute workload. If the number of I/O processes grows as increases the number of compute nodes then the I/O will impact in the run time.

<u>Recommendation</u>: reduce the number of I/O processes. As consequence the I/O Time remains constant (Right Figure)

- SuperMUC supercomputer
- User Projects
- Monitoring Tool
- I/O Software Stack
- I/O Analysis Tool
- Analyzing I/O Problems
- Conclusions

Conclusions:

- The I/O Pattern is usually the source of slow performance.
- POSIX-IO is the library more used in SuperMUC for small and medium jobs (1 Island)
- Parallel I/O is being including at large scale (more than 2 Islands).
- I/O Aggregation has more impact on the scalability (Number of I/O processes per compute nodes).

Future Work:

- I/O Pattern and Performance Analysis at compute node level with Persyst Tool.
- Automatic I/O profiling with Darshan Tool on SuperMUC.
- I/O Scalability analysis using a formal method for detection of I/O phases and I/O operations counters.
- Integration of Darshan logs into Splunk monitoring for identifying data patterns and diagnosing problems at system level.

