Michael Bidollahkhani, under the supervision of Prof. Dr. Julian Martin Kunkel, is a dedicated computer engineer and machine intelligence researcher. His expertise in software engineering and automated systems is recognized by his Young Scientist award from the YSF of Iran in 2017 and 2023. As a member of the National Elites Foundation and the ACM, Michael is actively engaged in the development of advanced intelligent systems.
ORCID: 0000-0001-8122-4441
Google Scholar: https://scholar.google.com/citations?user=_rLezLYAAAAJ
In this thesis, student will explore the current methods in AI to create smart algorithm that can catch problems in computer systems before they turn serious. Think of it as developing a high-tech 'early warning system'. The journey will involve playing with data, crafting algorithms, and running simulations to see how well they work. Plus, you'll get to integrate your creations into real computing systems, making them more reliable and reducing downtimes.
This research explores the potential of edge computing technologies in enabling real-time predictive maintenance within compute continuum systems. The objective is to develop a framework that utilizes edge computing for immediate data processing and decision-making, enhancing the overall efficiency and responsiveness of maintenance protocols. The thesis will involve both theoretical and practical aspects, including system design, implementation, and testing in real-world scenarios.
To answer the question of how making AI-driven maintenance work smoothly in huge computing systems, we will need to find out what makes scaling up so tricky and come up with efficient ways to make it better. Student will investigate the scalability challenges associated with implementing AI-based predictive maintenance in large-scale compute continuum systems. They'll get to analyze existing systems, brainstorm new methods, and test how well they work in the real world of large-scale computing maintenance. The research will focus on identifying key scalability issues and developing innovative solutions to enhance the performance and effectiveness of predictive maintenance strategies. It also will include a thorough analysis of current systems, proposal of new methodologies, and evaluation of their impact on large-scale system maintenance.
All publications as BibTex