
Go Programming in High-Performance Computing

Applications, Scalability and Speed

Valerius Mattfeld

Institute for Computer Science

April 19, 2024 University of Göttingen

SH

∞

https://valerius.me

)

https://valerius.me


The Go Programming Language Go in Container Virtualization Go-Applications in HPC Current State of Go-MPI Libraries Conclusion

Table of contents

1 The Go Programming Language

2 Go in Container Virtualization

3 Go-Applications in HPC

4 Current State of Go-MPI Libraries

5 Conclusion

Valerius Mattfeld University of Göttingen 2 / 20



The Go Programming Language Go in Container Virtualization Go-Applications in HPC Current State of Go-MPI Libraries Conclusion

Origins

■ Google has developed the Go programming language, aka. Golang

■ Engineers wanted to address criticism of other languages, but maintain
their useful features

▶ Static typing (C)

▶ Readability (Python)
▶ Add networking and multiprocessing (new)
▶ Version 1.0 in 2012

Valerius Mattfeld University of Göttingen 3 / 20

Documentation - The Go Programming Language, Pike, Another Go at Language Design



The Go Programming Language Go in Container Virtualization Go-Applications in HPC Current State of Go-MPI Libraries Conclusion

Origins

■ Google has developed the Go programming language, aka. Golang

■ Engineers wanted to address criticism of other languages, but maintain
their useful features

▶ Static typing (C)
▶ Readability (Python)

▶ Add networking and multiprocessing (new)
▶ Version 1.0 in 2012

Valerius Mattfeld University of Göttingen 3 / 20

Documentation - The Go Programming Language, Pike, Another Go at Language Design



The Go Programming Language Go in Container Virtualization Go-Applications in HPC Current State of Go-MPI Libraries Conclusion

Origins

■ Google has developed the Go programming language, aka. Golang

■ Engineers wanted to address criticism of other languages, but maintain
their useful features

▶ Static typing (C)
▶ Readability (Python)
▶ Add networking and multiprocessing (new)

▶ Version 1.0 in 2012

Valerius Mattfeld University of Göttingen 3 / 20

Documentation - The Go Programming Language, Pike, Another Go at Language Design



The Go Programming Language Go in Container Virtualization Go-Applications in HPC Current State of Go-MPI Libraries Conclusion

Origins

■ Google has developed the Go programming language, aka. Golang

■ Engineers wanted to address criticism of other languages, but maintain
their useful features

▶ Static typing (C)
▶ Readability (Python)
▶ Add networking and multiprocessing (new)
▶ Version 1.0 in 2012

Valerius Mattfeld University of Göttingen 3 / 20

Documentation - The Go Programming Language, Pike, Another Go at Language Design



The Go Programming Language Go in Container Virtualization Go-Applications in HPC Current State of Go-MPI Libraries Conclusion

The Go Programming Language

■ Open source

■ Simple and clean syntax

■ Concurrency via goroutines

■ Auto-typing at variable declaration

Valerius Mattfeld University of Göttingen 4 / 20

The Go Programming Language, Documentation - The Go Programming Language



The Go Programming Language Go in Container Virtualization Go-Applications in HPC Current State of Go-MPI Libraries Conclusion

The Go Programming Language

■ Open source

■ Simple and clean syntax

■ Concurrency via goroutines

■ Auto-typing at variable declaration

Valerius Mattfeld University of Göttingen 4 / 20

The Go Programming Language, Documentation - The Go Programming Language



The Go Programming Language Go in Container Virtualization Go-Applications in HPC Current State of Go-MPI Libraries Conclusion

The Go Programming Language

■ Open source

■ Simple and clean syntax

■ Concurrency via goroutines

■ Auto-typing at variable declaration

Valerius Mattfeld University of Göttingen 4 / 20

The Go Programming Language, Documentation - The Go Programming Language



The Go Programming Language Go in Container Virtualization Go-Applications in HPC Current State of Go-MPI Libraries Conclusion

The Go Programming Language

■ Open source

■ Simple and clean syntax

■ Concurrency via goroutines

■ Auto-typing at variable declaration

Valerius Mattfeld University of Göttingen 4 / 20

The Go Programming Language, Documentation - The Go Programming Language



The Go Programming Language Go in Container Virtualization Go-Applications in HPC Current State of Go-MPI Libraries Conclusion

The Go Programming Language (cont.)

■ Fast compilation

■ Build-in garbage collection

■ Big standard library

■ Many helper / Q.O.L. tools

Valerius Mattfeld University of Göttingen 5 / 20

Documentation - The Go Programming Language,Go: Source Code



The Go Programming Language Go in Container Virtualization Go-Applications in HPC Current State of Go-MPI Libraries Conclusion

The Go Programming Language (cont.)

■ Fast compilation

■ Build-in garbage collection

■ Big standard library

■ Many helper / Q.O.L. tools

Valerius Mattfeld University of Göttingen 5 / 20

Documentation - The Go Programming Language,Go: Source Code



The Go Programming Language Go in Container Virtualization Go-Applications in HPC Current State of Go-MPI Libraries Conclusion

The Go Programming Language (cont.)

■ Fast compilation

■ Build-in garbage collection

■ Big standard library

■ Many helper / Q.O.L. tools

Valerius Mattfeld University of Göttingen 5 / 20

Documentation - The Go Programming Language,Go: Source Code



The Go Programming Language Go in Container Virtualization Go-Applications in HPC Current State of Go-MPI Libraries Conclusion

The Go Programming Language (cont.)

■ Fast compilation

■ Build-in garbage collection

■ Big standard library

■ Many helper / Q.O.L. tools

Valerius Mattfeld University of Göttingen 5 / 20

Documentation - The Go Programming Language,Go: Source Code



The Go Programming Language Go in Container Virtualization Go-Applications in HPC Current State of Go-MPI Libraries Conclusion

The Go Programming Language (cont.)

■ Go Modules for dependencies.

■ comparable to pip, cargo, npm, etc.

■ go.mod

Valerius Mattfeld University of Göttingen 6 / 20

Documentation - The Go Programming Language



The Go Programming Language Go in Container Virtualization Go-Applications in HPC Current State of Go-MPI Libraries Conclusion

The Go Programming Language (cont.)

■ Go Modules for dependencies.

■ comparable to pip, cargo, npm, etc.

■ go.mod

Valerius Mattfeld University of Göttingen 6 / 20

Documentation - The Go Programming Language



The Go Programming Language Go in Container Virtualization Go-Applications in HPC Current State of Go-MPI Libraries Conclusion

The Go Programming Language (cont.)

■ Go Modules for dependencies.

■ comparable to pip, cargo, npm, etc.

■ go.mod

Valerius Mattfeld University of Göttingen 6 / 20

Documentation - The Go Programming Language



The Go Programming Language Go in Container Virtualization Go-Applications in HPC Current State of Go-MPI Libraries Conclusion

Go Syntax Example

Logging an add()-function implemented in Go
main.go

1 package main // package scope definition
2 import (
3 "github.com/rs/zerolog" // using a third-party package
4 "github.com/rs/zerolog/log"
5 )
6

7 func add(a, b int) int { // function implementation
8 return a + b
9 }

10 func main() { // entry point
11 n := 5 // variable declaration
12 log.Println(add(n, 5)) // logging library call
13 }

Valerius Mattfeld University of Göttingen 7 / 20



The Go Programming Language Go in Container Virtualization Go-Applications in HPC Current State of Go-MPI Libraries Conclusion

The Go Programming Language (cont.)

■ Language specific Memory Model

■ Data Race Detector

■ Syntax and language design force you to slow down

Valerius Mattfeld University of Göttingen 8 / 20

Documentation - The Go Programming Language, Pike, Another Go at Language Design



The Go Programming Language Go in Container Virtualization Go-Applications in HPC Current State of Go-MPI Libraries Conclusion

The Go Programming Language (cont.)

■ Language specific Memory Model

■ Data Race Detector

■ Syntax and language design force you to slow down

Valerius Mattfeld University of Göttingen 8 / 20

Documentation - The Go Programming Language, Pike, Another Go at Language Design



The Go Programming Language Go in Container Virtualization Go-Applications in HPC Current State of Go-MPI Libraries Conclusion

The Go Programming Language (cont.)

■ Language specific Memory Model

■ Data Race Detector

■ Syntax and language design force you to slow down

Valerius Mattfeld University of Göttingen 8 / 20

Documentation - The Go Programming Language, Pike, Another Go at Language Design



The Go Programming Language Go in Container Virtualization Go-Applications in HPC Current State of Go-MPI Libraries Conclusion

Goroutine Example

main.go

1 func printNumbers(ch chan int) {
2 for i := 1; i <= 5; i++ {
3 ch <- i
4 time.Sleep(1 * time.Second)
5 }
6 close(ch) // close the channel, preventing infinite blocking
7 }
8 func main() {
9 ch := make(chan int)

10 go printNumbers(ch) // invocate the function via a routine
11 for num := range ch { // awaits values until the channel is closed
12 fmt.Println("Received:", num)
13 }
14 }

Valerius Mattfeld University of Göttingen 9 / 20



The Go Programming Language Go in Container Virtualization Go-Applications in HPC Current State of Go-MPI Libraries Conclusion

Go in Virtualization: Docker / Moby

■ Efficient: No virtualized operating system required

■ Isolation: Self-contained environments

■ Portability: Containers can run on almost any operating system

Valerius Mattfeld University of Göttingen 10 / 20

The Moby Project, Efficiency Meets Flexibility



The Go Programming Language Go in Container Virtualization Go-Applications in HPC Current State of Go-MPI Libraries Conclusion

Go in Virtualization: Docker / Moby

■ Efficient: No virtualized operating system required

■ Isolation: Self-contained environments

■ Portability: Containers can run on almost any operating system

Valerius Mattfeld University of Göttingen 10 / 20

The Moby Project, Efficiency Meets Flexibility



The Go Programming Language Go in Container Virtualization Go-Applications in HPC Current State of Go-MPI Libraries Conclusion

Go in Virtualization: Docker / Moby

■ Efficient: No virtualized operating system required

■ Isolation: Self-contained environments

■ Portability: Containers can run on almost any operating system

Valerius Mattfeld University of Göttingen 10 / 20

The Moby Project, Efficiency Meets Flexibility



The Go Programming Language Go in Container Virtualization Go-Applications in HPC Current State of Go-MPI Libraries Conclusion

Go in Virtualization: Docker / Moby (cont.)

■ Memory Safety: Built-In garbage collection and language design reduce
bugs

■ Simplicity: Makes it easy to extend programs in a short amount of time

■ Concurrency: Go routines are lightweight threads (2 kB each)

■ Fast: Compiled executables

Valerius Mattfeld University of Göttingen 11 / 20

The Moby Project, Efficiency Meets Flexibility, Batta, Golang Working with goroutines



The Go Programming Language Go in Container Virtualization Go-Applications in HPC Current State of Go-MPI Libraries Conclusion

Go in Virtualization: Docker / Moby (cont.)

■ Memory Safety: Built-In garbage collection and language design reduce
bugs

■ Simplicity: Makes it easy to extend programs in a short amount of time

■ Concurrency: Go routines are lightweight threads (2 kB each)

■ Fast: Compiled executables

Valerius Mattfeld University of Göttingen 11 / 20

The Moby Project, Efficiency Meets Flexibility, Batta, Golang Working with goroutines



The Go Programming Language Go in Container Virtualization Go-Applications in HPC Current State of Go-MPI Libraries Conclusion

Go in Virtualization: Docker / Moby (cont.)

■ Memory Safety: Built-In garbage collection and language design reduce
bugs

■ Simplicity: Makes it easy to extend programs in a short amount of time

■ Concurrency: Go routines are lightweight threads (2 kB each)

■ Fast: Compiled executables

Valerius Mattfeld University of Göttingen 11 / 20

The Moby Project, Efficiency Meets Flexibility, Batta, Golang Working with goroutines



The Go Programming Language Go in Container Virtualization Go-Applications in HPC Current State of Go-MPI Libraries Conclusion

Go in Virtualization: Docker / Moby (cont.)

■ Memory Safety: Built-In garbage collection and language design reduce
bugs

■ Simplicity: Makes it easy to extend programs in a short amount of time

■ Concurrency: Go routines are lightweight threads (2 kB each)

■ Fast: Compiled executables

Valerius Mattfeld University of Göttingen 11 / 20

The Moby Project, Efficiency Meets Flexibility, Batta, Golang Working with goroutines



The Go Programming Language Go in Container Virtualization Go-Applications in HPC Current State of Go-MPI Libraries Conclusion

Go in Infrastructure: Apptainer / Singularity

■ Apptainer, formerly Singularity

■ Almost completely written in Go

■ Non-Root-Container system for HPC

■ Minimal virtualization, Docker compatible

Valerius Mattfeld University of Göttingen 12 / 20

Apptainer - The Container System for Secure HPC, Apptainer - Repository



The Go Programming Language Go in Container Virtualization Go-Applications in HPC Current State of Go-MPI Libraries Conclusion

Go in Infrastructure: Apptainer / Singularity

■ Apptainer, formerly Singularity

■ Almost completely written in Go

■ Non-Root-Container system for HPC

■ Minimal virtualization, Docker compatible

Valerius Mattfeld University of Göttingen 12 / 20

Apptainer - The Container System for Secure HPC, Apptainer - Repository



The Go Programming Language Go in Container Virtualization Go-Applications in HPC Current State of Go-MPI Libraries Conclusion

Go in Infrastructure: Apptainer / Singularity

■ Apptainer, formerly Singularity

■ Almost completely written in Go

■ Non-Root-Container system for HPC

■ Minimal virtualization, Docker compatible

Valerius Mattfeld University of Göttingen 12 / 20

Apptainer - The Container System for Secure HPC, Apptainer - Repository



The Go Programming Language Go in Container Virtualization Go-Applications in HPC Current State of Go-MPI Libraries Conclusion

Go in Infrastructure: Apptainer / Singularity

■ Apptainer, formerly Singularity

■ Almost completely written in Go

■ Non-Root-Container system for HPC

■ Minimal virtualization, Docker compatible

Valerius Mattfeld University of Göttingen 12 / 20

Apptainer - The Container System for Secure HPC, Apptainer - Repository



The Go Programming Language Go in Container Virtualization Go-Applications in HPC Current State of Go-MPI Libraries Conclusion

Go in Infrastructure: Apptainer / Singularity (cont.)

■ Container integrity-guarantee at runtime

■ Container encryption, and secret management compatibility (e.g. Vault)

■ Tighter integration to system resources, e.g. GPUs

■ Custom container repositories possible

Valerius Mattfeld University of Göttingen 13 / 20

Apptainer - The Container System for Secure HPC



The Go Programming Language Go in Container Virtualization Go-Applications in HPC Current State of Go-MPI Libraries Conclusion

Go in Infrastructure: Apptainer / Singularity (cont.)

■ Container integrity-guarantee at runtime

■ Container encryption, and secret management compatibility (e.g. Vault)

■ Tighter integration to system resources, e.g. GPUs

■ Custom container repositories possible

Valerius Mattfeld University of Göttingen 13 / 20

Apptainer - The Container System for Secure HPC



The Go Programming Language Go in Container Virtualization Go-Applications in HPC Current State of Go-MPI Libraries Conclusion

Go in Infrastructure: Apptainer / Singularity (cont.)

■ Container integrity-guarantee at runtime

■ Container encryption, and secret management compatibility (e.g. Vault)

■ Tighter integration to system resources, e.g. GPUs

■ Custom container repositories possible

Valerius Mattfeld University of Göttingen 13 / 20

Apptainer - The Container System for Secure HPC



The Go Programming Language Go in Container Virtualization Go-Applications in HPC Current State of Go-MPI Libraries Conclusion

Go in Infrastructure: Apptainer / Singularity (cont.)

■ Container integrity-guarantee at runtime

■ Container encryption, and secret management compatibility (e.g. Vault)

■ Tighter integration to system resources, e.g. GPUs

■ Custom container repositories possible

Valerius Mattfeld University of Göttingen 13 / 20

Apptainer - The Container System for Secure HPC



The Go Programming Language Go in Container Virtualization Go-Applications in HPC Current State of Go-MPI Libraries Conclusion

Go in Container Orchestration: Kubernetes

■ Kubernetes (k8s) is written in Go and builds upon Docker.

■ Automates deployment and scaling

■ Manages container orchestrations

Valerius Mattfeld University of Göttingen 14 / 20

Kubernetes Documentation



The Go Programming Language Go in Container Virtualization Go-Applications in HPC Current State of Go-MPI Libraries Conclusion

Go in Container Orchestration: Kubernetes in HPC

■ Can be tightly integrated with HPC

■ Fine-grained scheduling policies containerized workloads possible

■ Models for rootless, unprivileged Runtime Environment Containers are
proposed

■ But: K8s was originally designed for microservices, not HPC workloads

Valerius Mattfeld University of Göttingen 15 / 20

Dockendorf, Baer, and Johnson, “Early Experiences with Tight Integration of Kubernetes in an HPC Environment”,Liu and
Guitart, Fine-Grained Scheduling for Containerized HPC Workloads in Kubernetes Clusters, Hursey, “A separated model for

running rootless, unprivileged PMIx-enabled HPC applications in Kubernetes”



The Go Programming Language Go in Container Virtualization Go-Applications in HPC Current State of Go-MPI Libraries Conclusion

K8s for Serverless Functions

■ Notable examples for Kubernetes-based self-hostable platforms are:

▶ knative.dev (supporting languages like Go, Elixir, Java, etc.)

▶ nuclio.io (completely written in Go)
▶ openfaas.com (also using Go)
▶ fission.io (built with Go)

Valerius Mattfeld University of Göttingen 16 / 20

Knative documentation, Nuclio - "Serverless" for Real-Time Events and Data Processing, openfaas/faas: OpenFaaS -
Serverless Functions Made Simple, fission/fission: Fast and Simple Serverless Functions for Kubernetes



The Go Programming Language Go in Container Virtualization Go-Applications in HPC Current State of Go-MPI Libraries Conclusion

K8s for Serverless Functions

■ Notable examples for Kubernetes-based self-hostable platforms are:

▶ knative.dev (supporting languages like Go, Elixir, Java, etc.)
▶ nuclio.io (completely written in Go)

▶ openfaas.com (also using Go)
▶ fission.io (built with Go)

Valerius Mattfeld University of Göttingen 16 / 20

Knative documentation, Nuclio - "Serverless" for Real-Time Events and Data Processing, openfaas/faas: OpenFaaS -
Serverless Functions Made Simple, fission/fission: Fast and Simple Serverless Functions for Kubernetes



The Go Programming Language Go in Container Virtualization Go-Applications in HPC Current State of Go-MPI Libraries Conclusion

K8s for Serverless Functions

■ Notable examples for Kubernetes-based self-hostable platforms are:

▶ knative.dev (supporting languages like Go, Elixir, Java, etc.)
▶ nuclio.io (completely written in Go)
▶ openfaas.com (also using Go)

▶ fission.io (built with Go)

Valerius Mattfeld University of Göttingen 16 / 20

Knative documentation, Nuclio - "Serverless" for Real-Time Events and Data Processing, openfaas/faas: OpenFaaS -
Serverless Functions Made Simple, fission/fission: Fast and Simple Serverless Functions for Kubernetes



The Go Programming Language Go in Container Virtualization Go-Applications in HPC Current State of Go-MPI Libraries Conclusion

K8s for Serverless Functions

■ Notable examples for Kubernetes-based self-hostable platforms are:

▶ knative.dev (supporting languages like Go, Elixir, Java, etc.)
▶ nuclio.io (completely written in Go)
▶ openfaas.com (also using Go)
▶ fission.io (built with Go)

Valerius Mattfeld University of Göttingen 16 / 20

Knative documentation, Nuclio - "Serverless" for Real-Time Events and Data Processing, openfaas/faas: OpenFaaS -
Serverless Functions Made Simple, fission/fission: Fast and Simple Serverless Functions for Kubernetes



The Go Programming Language Go in Container Virtualization Go-Applications in HPC Current State of Go-MPI Libraries Conclusion

Using Go in "working" HPC applications

■ No native implementation of OpenMPI so far

■ Wrapper packages to OpenMPI C++ library

▶ GoMPI, feature complete with MPI v2

▶ Gosl/MPI, most popular wrapper
▶ yoo/Go-MPI faster than Gosl, less message latency

■ Currently not Rust-FFI wrapper

Valerius Mattfeld University of Göttingen 17 / 20

Beifuss, A Golang Wrapper for MPI,Bromberger, sbromberger/gompi, mpi package - github.com/cpmech/gosl/mpi - Go
Packages, Weging, go-mpi



The Go Programming Language Go in Container Virtualization Go-Applications in HPC Current State of Go-MPI Libraries Conclusion

Using Go in "working" HPC applications

■ No native implementation of OpenMPI so far

■ Wrapper packages to OpenMPI C++ library

▶ GoMPI, feature complete with MPI v2
▶ Gosl/MPI, most popular wrapper

▶ yoo/Go-MPI faster than Gosl, less message latency

■ Currently not Rust-FFI wrapper

Valerius Mattfeld University of Göttingen 17 / 20

Beifuss, A Golang Wrapper for MPI,Bromberger, sbromberger/gompi, mpi package - github.com/cpmech/gosl/mpi - Go
Packages, Weging, go-mpi



The Go Programming Language Go in Container Virtualization Go-Applications in HPC Current State of Go-MPI Libraries Conclusion

Using Go in "working" HPC applications

■ No native implementation of OpenMPI so far

■ Wrapper packages to OpenMPI C++ library

▶ GoMPI, feature complete with MPI v2
▶ Gosl/MPI, most popular wrapper
▶ yoo/Go-MPI faster than Gosl, less message latency

■ Currently not Rust-FFI wrapper

Valerius Mattfeld University of Göttingen 17 / 20

Beifuss, A Golang Wrapper for MPI,Bromberger, sbromberger/gompi, mpi package - github.com/cpmech/gosl/mpi - Go
Packages, Weging, go-mpi



The Go Programming Language Go in Container Virtualization Go-Applications in HPC Current State of Go-MPI Libraries Conclusion

Using Go in "working" HPC applications (cont.)

■ Implementations C are faster

■ Better scaling for non-blocking communication

■ There is a lack of better/native implementations

Valerius Mattfeld University of Göttingen 18 / 20

Beifuss, A Golang Wrapper for MPI



The Go Programming Language Go in Container Virtualization Go-Applications in HPC Current State of Go-MPI Libraries Conclusion

Using Go in "working" HPC applications (cont.)

■ Implementations C are faster

■ Better scaling for non-blocking communication

■ There is a lack of better/native implementations

Valerius Mattfeld University of Göttingen 18 / 20

Beifuss, A Golang Wrapper for MPI



The Go Programming Language Go in Container Virtualization Go-Applications in HPC Current State of Go-MPI Libraries Conclusion

Using Go in "working" HPC applications (cont.)

■ Implementations C are faster

■ Better scaling for non-blocking communication

■ There is a lack of better/native implementations

Valerius Mattfeld University of Göttingen 18 / 20

Beifuss, A Golang Wrapper for MPI



The Go Programming Language Go in Container Virtualization Go-Applications in HPC Current State of Go-MPI Libraries Conclusion

Using Go in "working" HPC applications (cont.)

Thoughts: Use Go when...

■ Heavy use of parallelization is required

■ Many developers are involved

■ Changes need to happen quickly

Valerius Mattfeld University of Göttingen 19 / 20



The Go Programming Language Go in Container Virtualization Go-Applications in HPC Current State of Go-MPI Libraries Conclusion

Using Go in "working" HPC applications (cont.)

Thoughts: Use Go when...

■ Heavy use of parallelization is required

■ Many developers are involved

■ Changes need to happen quickly

Valerius Mattfeld University of Göttingen 19 / 20



The Go Programming Language Go in Container Virtualization Go-Applications in HPC Current State of Go-MPI Libraries Conclusion

Using Go in "working" HPC applications (cont.)

Thoughts: Use Go when...

■ Heavy use of parallelization is required

■ Many developers are involved

■ Changes need to happen quickly

Valerius Mattfeld University of Göttingen 19 / 20



The Go Programming Language Go in Container Virtualization Go-Applications in HPC Current State of Go-MPI Libraries Conclusion

Conclusion

■ Go is currently the most used language for infrastructure and
containerization

■ Memory Management, and state-of-the-art parallelization

■ OpenMPI C++ Wrappers are most common

■ Go is slower than Rust and C++, but faster than Python

■ Go should be used in deployments, Rust or C++ for calculations in HPC

■ Easy to learn, fast initial contributions

Valerius Mattfeld University of Göttingen 20 / 20



The Go Programming Language Go in Container Virtualization Go-Applications in HPC Current State of Go-MPI Libraries Conclusion

References
Apptainer - Repository. original-date: 2021-11-30T13:45:16Z. July 2023. URL:

https://github.com/apptainer/apptainer (visited on 07/06/2023).
Apptainer - The Container System for Secure HPC. en. URL: https://apptainer.org/ (visited on 07/06/2023).
Batta, Anjaneyulu. Golang Working with goroutines. en. URL:

https://learnbatta.com//course/golang/working-with-goroutines/ (visited on 07/06/2023).
Beifuss. A Golang Wrapper for MPI. 2014.
Bromberger, Seth. sbromberger/gompi. original-date: 2019-10-15T17:52:52Z. June 2023. URL:

https://github.com/sbromberger/gompi (visited on 07/06/2023).
Dockendorf, Trey, Troy Baer, and Doug Johnson. “Early Experiences with Tight Integration of Kubernetes in an

HPC Environment”. In: Practice and Experience in Advanced Research Computing. PEARC ’22. New York,
NY, USA: Association for Computing Machinery, July 2022, pp. 1–4. ISBN: 978-1-4503-9161-0. DOI:
10.1145/3491418.3535150. URL: https://doi.org/10.1145/3491418.3535150 (visited on 07/05/2023).

Documentation - The Go Programming Language. en. URL: https://go.dev/doc/ (visited on 07/04/2023).
Efficiency Meets Flexibility: The Advantages of Using Go in Your Project. en. URL:

https://polcode.com/resources/blog/efficiency-meets-flexibility-the-advantages-of-
using-go-in-your-project/ (visited on 07/05/2023).

fission/fission: Fast and Simple Serverless Functions for Kubernetes. URL:
https://github.com/fission/fission (visited on 05/31/2023).

Go: Source Code. URL: https://cs.opensource.google/go/go/+/master:src/ (visited on 07/05/2023).
Hursey, Joshua. “A separated model for running rootless, unprivileged PMIx-enabled HPC applications in

Kubernetes”. In: 2022 IEEE/ACM 4th International Workshop on Containers and New Orchestration
Paradigms for Isolated Environments in HPC (CANOPIE-HPC). Nov. 2022, pp. 36–44. DOI:
10.1109/CANOPIE-HPC56864.2022.00009.

Knative documentation. original-date: 2018-06-21T18:21:09Z. May 2023. URL:
https://github.com/knative/docs (visited on 05/31/2023).

Kubernetes Documentation. en. URL: https://kubernetes.io/docs/home/ (visited on 07/05/2023).
Liu, Peini and Jordi Guitart. Fine-Grained Scheduling for Containerized HPC Workloads in Kubernetes Clusters.

arXiv:2211.11487 [cs]. Nov. 2022. DOI: 10.48550/arXiv.2211.11487. URL:
http://arxiv.org/abs/2211.11487 (visited on 07/05/2023).

mpi package - github.com/cpmech/gosl/mpi - Go Packages. URL:
https://pkg.go.dev/github.com/cpmech/gosl/mpi#section-readme (visited on 07/06/2023).

Nuclio - "Serverless" for Real-Time Events and Data Processing. original-date: 2017-05-19T10:55:09Z. May
2023. URL: https://github.com/nuclio/nuclio (visited on 05/31/2023).

openfaas/faas: OpenFaaS - Serverless Functions Made Simple. URL: https://github.com/openfaas/faas
(visited on 05/31/2023).

Pike, Rob. Another Go at Language Design. Apr. 2010. URL:
https://web.stanford.edu/class/ee380/Abstracts/100428.html (visited on 07/05/2023).

The Go Programming Language. original-date: 2014-08-19T04:33:40Z. July 2023. URL:
https://github.com/golang/go (visited on 07/05/2023).

The Moby Project. original-date: 2013-01-18T18:10:57Z. July 2023. URL: https://github.com/moby/moby
(visited on 07/05/2023).

Weging, Johann. go-mpi. original-date: 2013-04-17T12:21:33Z. Feb. 2023. URL:
https://github.com/yoo/go-mpi (visited on 07/06/2023).

Valerius Mattfeld University of Göttingen 21 / 20

https://github.com/apptainer/apptainer
https://apptainer.org/
https://learnbatta.com//course/golang/working-with-goroutines/
https://github.com/sbromberger/gompi
https://doi.org/10.1145/3491418.3535150
https://doi.org/10.1145/3491418.3535150
https://go.dev/doc/
https://polcode.com/resources/blog/efficiency-meets-flexibility-the-advantages-of-using-go-in-your-project/
https://polcode.com/resources/blog/efficiency-meets-flexibility-the-advantages-of-using-go-in-your-project/
https://github.com/fission/fission
https://cs.opensource.google/go/go/+/master:src/
https://doi.org/10.1109/CANOPIE-HPC56864.2022.00009
https://github.com/knative/docs
https://kubernetes.io/docs/home/
https://doi.org/10.48550/arXiv.2211.11487
http://arxiv.org/abs/2211.11487
https://pkg.go.dev/github.com/cpmech/gosl/mpi#section-readme
https://github.com/nuclio/nuclio
https://github.com/openfaas/faas
https://web.stanford.edu/class/ee380/Abstracts/100428.html
https://github.com/golang/go
https://github.com/moby/moby
https://github.com/yoo/go-mpi

	The Go Programming Language
	Go in Container Virtualization
	Go-Applications in HPC
	Current State of Go-MPI Libraries
	Conclusion

