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Origins

■ Google has developed the Go programming language, aka. Golang

■ Engineers wanted to address criticism of other languages, but maintain
their useful features

▶ Static typing (C)

▶ Readability (Python)
▶ Add networking and multiprocessing (new)
▶ Version 1.0 in 2012
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The Go Programming Language

■ Open source

■ Simple and clean syntax

■ Concurrency via goroutines

■ Auto-typing at variable declaration
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The Go Programming Language (cont.)

■ Fast compilation

■ Build-in garbage collection

■ Big standard library

■ Many helper / Q.O.L. tools
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The Go Programming Language (cont.)

■ Go Modules for dependencies.

■ comparable to pip, cargo, npm, etc.

■ go.mod
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Go Syntax Example

Logging an add()-function implemented in Go
main.go

1 package main // package scope definition
2 import (
3 "github.com/rs/zerolog" // using a third-party package
4 "github.com/rs/zerolog/log"
5 )
6

7 func add(a, b int) int { // function implementation
8 return a + b
9 }

10 func main() { // entry point
11 n := 5 // variable declaration
12 log.Println(add(n, 5)) // logging library call
13 }

Valerius Mattfeld University of Göttingen 7 / 20
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The Go Programming Language (cont.)

■ Language specific Memory Model

■ Data Race Detector

■ Syntax and language design force you to slow down
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Goroutine Example

main.go

1 func printNumbers(ch chan int) {
2 for i := 1; i <= 5; i++ {
3 ch <- i
4 time.Sleep(1 * time.Second)
5 }
6 close(ch) // close the channel, preventing infinite blocking
7 }
8 func main() {
9 ch := make(chan int)

10 go printNumbers(ch) // invocate the function via a routine
11 for num := range ch { // awaits values until the channel is closed
12 fmt.Println("Received:", num)
13 }
14 }

Valerius Mattfeld University of Göttingen 9 / 20
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Go in Virtualization: Docker / Moby

■ Efficient: No virtualized operating system required

■ Isolation: Self-contained environments

■ Portability: Containers can run on almost any operating system

Valerius Mattfeld University of Göttingen 10 / 20
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Go in Virtualization: Docker / Moby (cont.)

■ Memory Safety: Built-In garbage collection and language design reduce
bugs

■ Simplicity: Makes it easy to extend programs in a short amount of time

■ Concurrency: Go routines are lightweight threads (2 kB each)

■ Fast: Compiled executables
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Go in Infrastructure: Apptainer / Singularity

■ Apptainer, formerly Singularity

■ Almost completely written in Go

■ Non-Root-Container system for HPC

■ Minimal virtualization, Docker compatible
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Go in Infrastructure: Apptainer / Singularity (cont.)

■ Container integrity-guarantee at runtime

■ Container encryption, and secret management compatibility (e.g. Vault)

■ Tighter integration to system resources, e.g. GPUs

■ Custom container repositories possible
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Go in Container Orchestration: Kubernetes

■ Kubernetes (k8s) is written in Go and builds upon Docker.

■ Automates deployment and scaling

■ Manages container orchestrations
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Go in Container Orchestration: Kubernetes in HPC

■ Can be tightly integrated with HPC

■ Fine-grained scheduling policies containerized workloads possible

■ Models for rootless, unprivileged Runtime Environment Containers are
proposed

■ But: K8s was originally designed for microservices, not HPC workloads

Valerius Mattfeld University of Göttingen 15 / 20

Dockendorf, Baer, and Johnson, “Early Experiences with Tight Integration of Kubernetes in an HPC Environment”,Liu and
Guitart, Fine-Grained Scheduling for Containerized HPC Workloads in Kubernetes Clusters, Hursey, “A separated model for

running rootless, unprivileged PMIx-enabled HPC applications in Kubernetes”
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K8s for Serverless Functions

■ Notable examples for Kubernetes-based self-hostable platforms are:

▶ knative.dev (supporting languages like Go, Elixir, Java, etc.)

▶ nuclio.io (completely written in Go)
▶ openfaas.com (also using Go)
▶ fission.io (built with Go)

Valerius Mattfeld University of Göttingen 16 / 20

Knative documentation, Nuclio - "Serverless" for Real-Time Events and Data Processing, openfaas/faas: OpenFaaS -
Serverless Functions Made Simple, fission/fission: Fast and Simple Serverless Functions for Kubernetes
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Using Go in "working" HPC applications

■ No native implementation of OpenMPI so far

■ Wrapper packages to OpenMPI C++ library

▶ GoMPI, feature complete with MPI v2

▶ Gosl/MPI, most popular wrapper
▶ yoo/Go-MPI faster than Gosl, less message latency

■ Currently not Rust-FFI wrapper

Valerius Mattfeld University of Göttingen 17 / 20

Beifuss, A Golang Wrapper for MPI,Bromberger, sbromberger/gompi, mpi package - github.com/cpmech/gosl/mpi - Go
Packages, Weging, go-mpi
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Using Go in "working" HPC applications (cont.)

■ Implementations C are faster

■ Better scaling for non-blocking communication

■ There is a lack of better/native implementations

Valerius Mattfeld University of Göttingen 18 / 20
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Using Go in "working" HPC applications (cont.)

Thoughts: Use Go when...

■ Heavy use of parallelization is required

■ Many developers are involved

■ Changes need to happen quickly

Valerius Mattfeld University of Göttingen 19 / 20



The Go Programming Language Go in Container Virtualization Go-Applications in HPC Current State of Go-MPI Libraries Conclusion

Using Go in "working" HPC applications (cont.)

Thoughts: Use Go when...

■ Heavy use of parallelization is required

■ Many developers are involved

■ Changes need to happen quickly

Valerius Mattfeld University of Göttingen 19 / 20



The Go Programming Language Go in Container Virtualization Go-Applications in HPC Current State of Go-MPI Libraries Conclusion

Using Go in "working" HPC applications (cont.)

Thoughts: Use Go when...

■ Heavy use of parallelization is required

■ Many developers are involved

■ Changes need to happen quickly

Valerius Mattfeld University of Göttingen 19 / 20



The Go Programming Language Go in Container Virtualization Go-Applications in HPC Current State of Go-MPI Libraries Conclusion

Conclusion

■ Go is currently the most used language for infrastructure and
containerization

■ Memory Management, and state-of-the-art parallelization

■ OpenMPI C++ Wrappers are most common

■ Go is slower than Rust and C++, but faster than Python

■ Go should be used in deployments, Rust or C++ for calculations in HPC

■ Easy to learn, fast initial contributions

Valerius Mattfeld University of Göttingen 20 / 20
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