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Abstract
Go is a popular, statically typed and compiled language with an easy to learn syntax
and unique concurrency model. Therefore, it could provide some beneficial contributions
to the High-Performance Computing (HPC) ecosystem. This report investigates the use
cases and practicality of Go in modern cloud computing in regard to serverless functions,
containerization, orchestration and HPC. The challenge resides in providing Go with a
robust Message Passing Interface (MPI) library, which effectively manages the language’s
typical memory model and garbage collection, as it gets in the way of harnessing Go’s
potential in HPC. Currently, research and development in the HPC application area is
stagnated and fully focused on cloud infrastructure. The HPC ecosystem could benefit
from a language with excellent concurrency support on worker nodes. A wrapper library
with an accessible API, which manages the language given caveats, could unlock Go’s
potential in HPC and improve the developer experience.
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Declaration on the use of ChatGPT and comparable tools
in the context of examinations

In this work I have used ChatGPT or another AI as follows:

□ Not at all

□ During brainstorming

□ When creating the outline

□ To write individual passages, altogether to the extent of 0% of the entire text

□ For the development of software source texts

□ For optimizing or restructuring software source texts

□ For proofreading or optimizing

✓□ Further, namely: The usage of semanticscolar.org1 for searching and discovering
scientific literature. LanguageTool.org2 for finding typos and incorrect spelling.

I hereby declare that I have stated all uses completely.
Missing or incorrect information will be considered as an attempt to cheat.

1https://www.semanticscholar.org/
2https://languagetool.org/
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Go in High Performance Computing

1 Introduction
This report explores the Go programming language over various fields, starting with its
core benefits, its use in cloud computing, and its role in HPC. It is a statically compiled
language with a unique concurrency and memory model.[23c] Additionally, Go embodies
a simple syntax alongside an in-build garbage collector.[23c] This report investigates the
language’s potential for HPC applications.

The report introduces the Go programming language with its origins and core traits,
and benefits in section 3. Then continue to section 4 with Go’s relevance in container
virtualization and usage in HPC. After that, the report discusses the suitability of Go in
HPC as an application language along with its available MPI wrappers and the implied
challenges in section 5-6.

Lastly, in section 7 the report explores the usage of Go-based serverless function frame-
works in combination with Kubernetes, which attempt to process HPC workloads in a
modern fashion.

2 Background and Motivation
When it comes to the usage of Go in HPC, and, by extension, MPI applications, the
available source material is sparsely populated. Aside from one source, namely [BW14],
no serious attempts or utilization of Go with MPI beside some unmaintained and outdated
OpenMPI [ope] wrapper libraries are present on the internet or research databases.

Since Go is an accessible, statically typed, and compiled language with a rich stan-
dard library with a modern concurrency model, it lately became quite popular among
developers. [Cas22; 23c]

Having a language capable of an easy-to-use concurrency model could benefit the
development of faster, and single-node parallelism-focused HPC applications. With that,
the question arises, why Go does have a limited popularity when it comes to MPI related
runtime applications and research.

Furthermore, when viable, Go could enable novice-programmers to find a stepping-
stone into HPC application development without having advanced knowledge of lower-
level programming languages like C or C++.

Moreover, with the push of moving HPC workloads into Kubernetes clusters, [PA22;
LG22] and the rising demand for serverless functions, [Sch+21] Go could offer an entry
point for developers and researchers planning to contribute to this kind of projects.

3 Benefits of using Go in Cloud Envi-
ronments

This section briefly elaborates on the origins of the Go programming language. After
that, we briefly examine the language’s core traits and benefits. Finally, we will explore
how Go can benefit applications in becoming more scalable and cost-effective.

Section 3 Valerius Mattfeld 1
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3.1 The Go Programming Language

The Go programming language, initially authored by Robert Pike in 2007, is a compiled
programming language. [god24]

Since then, it has been under active development by Google and Open-Source main-
tainers. [god24]

The motivation for creating Go as a programming language was to resolve issues and
criticism regarding programming languages at the time while maintaining their core ben-
efits. [god24] Those benefits included the static typing of the C programming language
and the readability of Python while creating a design that includes networking and multi-
processing capabilities in a language-native manner. Go was released in 2012 with version
1.0.[god24]

Go’s most vital benefits include being a language with simple syntax, type inference,
fast compile times, and state-of-the-art concurrency design.[23c; god24] This concurrency
design is language native and partly shown by using the go keyword to start a green thread
for an asynchronous function call; an example can be found in Listing 2. An example of
the Go syntax and a simple "Hello" application can be found in Listing 1.

1 package main // entrypoint package
2

3 import "fmt"
4

5 func main() { // application entry point
6 fmt.Println("Hello")
7 }

Listing 1: "Hello" in Go

1 package main
2

3 func routine() {
4 // ...
5 }
6

7 func main() {
8 go routine()
9 }

Listing 2: Calling a function as a goroutine

Furthermore, Go offers in-build tools, like a race-checker, benchmarkers, a minimal
package manager, profilers, static code analysis, and a rich standard library, which en-
hances the developer’s experience in writing Go applications.[god24; 23c] Another inter-
esting trait is that Go has a language-specific memory model.[god24; Bit22]

Go’s compiled nature results in benefits, like fast startup times and seamless deploy-
ment on the target OS architecture, since it omits the need for an interpreter. [god24]

Section 3 Valerius Mattfeld 2



Go in High Performance Computing

This results in the advantage that, while Go is a garbage-collected language, it generally
outperforms interpreted languages.

3.2 Use-Cases

Go’s robust ecosystem, including support for industry-relevant technologies like Hypertext
Transfer Protocol (HTTP), Extended Markup Language (XML), JavaScript Object Nota-
tion (JSON), and Structured Query Language (SQL) databases, makes it, in combination
with the benefits mentioned earlier, a popular choice in big tech.[god]

Some concretizations include but are not limited to Go making up over 75% of project
code at the Cloud Native Computing Foundation, its applications in Google Cloud -
natively supporting it through their product line, powering the serverless Credit-Offer-API
at Capital One, and providing the vehicle for Dropbox’s business logic for performance-
critical backend sections.[god]

Go shines when used with containerization software, like Docker and, by extension,
the container-orchestration software Kubernetes. This will be elaborated in section 4.

3.3 Scalability and Cost-Effectiveness

As mentioned above, Go’s benefits make it a fitting choice for cloud-based applications.
This is particularly advantageous when leveraging features such as goroutines and

channels, which enables the creation of easily maintainable microservices.[23c]
Furthermore, due to its memory model and garbage collection, Go’s effective resource

allocation allows for the more efficient assignment of available hardware quotas.[God24]
This results in enhanced scalability and cost efficiency within cloud environments.[god;
God24]

Lastly, the easy syntax and rich ecosystem, due to the package manager’s decentralized
nature — it only requires a reference to the library’s git repository — allows quick and
independent development of robust applications.[God24]

4 Go in Container Virtualization
When it comes to virtualization and Go, some names immediately come to mind: Kuber-
netes and Docker.

4.1 Docker

Docker3, being a containerization and, by extension, virtualization software, is of cru-
cial importance for the modern tech industry. It comes with several benefits, such as
easy packaging, portability, and scalability of applications. Docker does not require a
Hypervisor in order to run containers. It utilizes the underlying operating system di-
rectly.[Par+16] Dockers’ engine is written in Go, which plays a key role in its efficient
performance and resource management, due to the benefits of the language mentioned
above.[23d; 22]

3https://docker.com/
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4.2 Kubernetes

Kubernetes, on the other hand, is an open-source container orchestration platform writ-
ten to a severe extent in Go, that automates many of the manual processes involved in
deploying, managing, and scaling containerized applications.[Kub] Important to note is
that Kubernetes is compatible with Docker containers, but not limited to them. It is
also capable of running Singularity-based containers, which are used in the HPC sector
as well, [PA22]. Go allows the concurrent and management and orchestration process of
those containers or pods, making it a suitable programming language to scale a Kuber-
netes infrastructure.

Since both, Docker and Kubernetes, are written in Go, one might assume, that Go is
a highly suitable language for container virtualization and orchestration tasks, possibly a
great choice for HPC applications.

5 Usage of Go in HPC
This section briefly discusses the process of choosing a programming language for HPC
and discusses the viability of Go as a fitting language in that aspect.

5.1 Choosing a programming language for HPC

In HPC applications, using the right programming language can significantly impact the
yield of results concerning the resources used.

Languages like FORTRAN turned out to be quite adequate for its usage in HPC,
[Loh10]. In fact, [Loh10] et al. state that programming challenges stem mostly from
factors other than the programming language, which is FORTRAN itself. The author,
however, does not elaborate on the performance implications of interpreted languages used
in HPC. Moreover, [Loh10] encourages that readability, variability, and maintainability
are crucial factors when developing HPC applications.

The popularity of statically typed and compiled languages like C and C++ in HPC is
indicated by the popularity of MPI SDKs and their respective wrappers written in them.
Those include, but are not limited to:

• MPICH, [mpi]

• OpenMPI, [ope]

• mpi4py, a Python-Wrapper for the aforementioned, [DF21]

• rsmpi, a Rust-Wrapper for the aforementioned, [24]

Since a strong performance boost compared to interpreted or runtime-dependent lan-
guages like Java is contested [Mer+15] et al., C, C++, and FORTRAN enable the devel-
oper of fine-grained control on how the program works down to the deepest level.

Returning to [Loh10] et al., [Vir10] argues that given a fixed timeframe for developers,
a language like Java can outperform a C application. [Vir10] also argues, similarly to
[Mer+15], that a runtime-dependent language, in that case Java, is not significantly less
performant than C.

Section 5 Valerius Mattfeld 4
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Choosing a language based on the use case and the application requirements may be
wiser rather than just finding the perfect language for every use case. Using a lower-
level language like C or C++ for HPC is possibly more efficient when there is no strict
timeframe, high requirements on throughput, and capabilities for optimization.

Otherwise, one may consider an interpreted or runtime-dependent language.

5.2 Go as a programming language for HPC

At first glance, Go presents itself as a compelling option for developing HPC applica-
tions, particularly when the demands do not necessitate intricate control over low-level
instructions.

This assertion gains confidence when considering the general usage of MPI libraries
in many computational tasks, where Go has its own libraries in the form of Go-MPI
[Weg23]and gompi [Bro23].

However, an apparent drawback emerges in the absence of native GPU support within
Go.

This limitation can prove inhibitive for applications requiring the usage of GPUs for
accelerated computation.

Despite this, innovative strides have been made to bridge this gap by leveraging
Compute Unified Device Architecture (CUDA) and OpenGL4 through C interfaces in
conjunction with MPI implementations such as MPICH and Open MPI [BW14].

Moreover, Go’s modern and straightforward approach to application development
makes it an attractive candidate for swiftly prototyping and deploying HPC solutions,
particularly those not bound by stringent performance requirements.

By bypassing the overhead associated with interpreters or runtime environments, Go
appears as a potentially faster alternative to languages like Java or Python for certain
HPC use cases.

The modern and easy approach to writing applications on Go makes it a fitting can-
didate for rapidly developed, non-performance-critical HPC applications.

Omitting the need for an interpreter or a runtime, Go can be an even faster solution
than Java or Python implementations.

6 Go Libraries in HPC
This section delves into the difficulties of interfacing with MPI libraries through language
wrappers and the challenges Go’s garbage collection poses in HPC contexts.

It shows how Rust and Go interact with C and how performance issues and incomplete
functionality mappings are often associated with such wrappers.

Furthermore, it discusses the complexities of binding C functions in Go, as well as the
implications for cross-platform compatibility. Potential issues encountered in distributed
computing environments are illustrated by the impact of Go’s shared memory model
and garbage collection on HPC applications. The section shows how important language
choice and memory management strategies are when making HPC applications.

4https://www.opengl.org/
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6.1 MPI Library Wrappers

Almost every language has the capability to use an Foreign-Function Interface (FFI) to
interface with lower-level languages like C, or C++. This is especially important when it
comes to HPC for enabling other languages to interface with MPI libraries, like OpenMPI
or mpich.

A library wrapper essentially packages the base library, which in that case would
be OpenMPI or mpich, in such a way that the functionality is accessible inside the target
language. This is done by using the FFI aspect of the target language to link the functions
of the underlying library to their respective counterpart. This allows the invocation of the
functions and capabilities of the underlying library from the target language, running the
compiled libraries code with the defined parameters, essentially forwarding the parameters
to the library for processing.

One example, calling Rust from C, is [Gou], interfacing with a C program over Rusts’
function definitions. Listing 3 shows, how a simple addition function is defined in Rust.
The C counterpart, displayed in Listing 4, calling the Rust-defined function, matching
the data-types from a Rust-compiled shared library; effectively outsourcing the function
call processing to Rust while running the C program.

1 #[no_mangle]
2 pub extern "C" fn addition(a: u32, b: u32) -> u32 {
3 a + b
4 }

Listing 3: Defining the addition function and business logic in Rust, [Gou]

1 #include <stdio.h>
2 #include <stdint.h>
3 #include <inttypes.h>
4 extern uint32_t addition(uint32_t, uint32_t);
5 int main(void) {
6 uint32_t sum = addition(1, 2);
7 printf("%" PRIu32 "\n", sum);
8 }

Listing 4: Interfacing with the Rust-implemented function in C, adding two unsigned
32-bit integers, [Gou]

Applying the same idea, but going from the C/C++ implementations of OpenMPI or
mpich, libraries like mpi4py or rsmpi, as mentioned above, allow the respective languages
to leverage the embedded libraries’ capabilities.

One crucial implication, which results from this programming pattern is, that the
invocation of the embedded functions is always proxied by the overlaying language, which
is possibly slower, effecting the performance of the HPC application compared to pure
C/C++ implementations using those libraries directly. Furthermore, library wrappers
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tend to be incomplete in their functionality-mapping, as rsmpi and gosl indicate, [24]
[Cpm].

Binding C functions in Go is a fairly tricky process. It involves the usage of the cgo
command, which comes with the Go development suite.[God24]

First, it involves employing the C pseudo-package and defining the corresponding
data types for their counterparts in the embedded library. Then, the developer needs to
respect the libraries and C-specific traits when mapping the Application Programming
Interface (API) to every method, respecting the behavior and data-types of the underlying
functions.[God24]

Listing 5 shows, how gompi achieves this by interfacing with OpenMPI. Compatibility
flags are displayed at the top of the snippet, while the build-process, flags, and the start
of the pseudo-package follow.

1 //go:build !windows
2 // +build !windows
3

4 //go:generate stringer -type=DataType
5 //go:generate stringer -type=Op
6 // ...
7 /*
8 #include "mpi.h"
9

10 MPI_Comm World = MPI_COMM_WORLD;
11 MPI_Status* StIgnore = MPI_STATUS_IGNORE;
12

13 #define DOUBLE_COMPLEX double complex
14 */
15 import "C"

Listing 5: Go Interfacing with OpenMPI, [Bro23]

The potential drawback of tying C code to Go may pertain to its compatibility across
multiple platforms, as it becomes bound to the platform compatibility of the underlying
C codes.

In summary, the complexity of interfacing with C libraries in Go is heavily depen-
dent on the embedded counterpart. To create a properly defined mapping, it is necessary
to know the difficulties and behavior of the functionality and aspects of the library be-
forehand. In the context of MPI, it is imperative that the developer is cognizant of the
characteristics of the underlying library and its interaction with the HPC cluster, and
may be able to modify the Go source code to align with this behavior. Furthermore,
when incorporating C code into Go, it may compromise its compatibility with various
platforms.

6.2 Garbage Collection and Shared Memory in Go for HPC

Characteristic of Go’s concurrency model is its shared memory model and built-in garbage
collection. Since a green-thread-similar model is utilized inside the goroutines, the require-

Section 6 Valerius Mattfeld 7
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ment for a memory-model capable of allowing such concurrency became a necessity.[God]
A part of the official Go documentation discusses a crucial aspect of Go programming:

handling memory safely and effectively.[God] It discusses Go’s features to ensure correct
memory handling, decreasing the probability of memory-related errors like segmentation
faults and buffer overflows. Moreover, Go distinguishes between "kinds" of memory access;
for example, read-like and write-like operations being handled with different priorities,
mitigating the chance of data races. This allows a seamless and safe development of
concurrent applications. However, an essential context in the aspect of HPC is that the
shared memory model refers to being shared between threads, not machines.

Since multiple goroutines do have access to the same memory space, garbage-collection
will also be handled on the same space, [God; Bit22].

This introduces the problem of the garbage collector not being able to effectively assess
an object’s lifetime when used in HPC with MPI libraries. This problem was observed
last year during the development of a traffic simulator, initially written in Go for HPC.5

In the referenced report, some objects representing a vehicle in that simulation were
garbage collected because they were sent to other machines inside the cluster. The origin
machine had no way of knowing if the corresponding vehicle still existed. That issue
displayed an example of why choosing the right language for the requirements becomes
so crucial.

To summarize, Go allows the development of memory-safe and efficient applications on
a single machine but reaches its limitations when being deployed onto HPC clusters with
high throughput since the automatic garbage-collection process needs to be considered
and managed by the developer.

7 Serverless Functions in HPC with Go
In this section, we explore what serverless functions are and how they are usually deployed.
Subsequently, we examine prominent Functions-as-a-Service (FaaS) frameworks. Finally,
we examine solutions for HPC involving serverless functions for processing workloads.

7.1 Serverless functions

A new trend in cloud computing with rising popularity is the utilization of serverless
functions.[Sch+21] Serverless functions are a model in which the cloud provider dynam-
ically manages the allocation of available hardware resources.[Sch+21] These functions
are initiated by events or requests and execute code provided by the user, usually by an
endpoint invocation.[Sch+21]

Several key traits define the characteristics of serverless applications.
First, we have event-driven execution of the stateless function. This ensures that

only necessary actions are undertaken, thereby aiding in the efficient utilization of re-
sources.[Sch+21]

Subsequently, the automated scaling of the available resources to a specific deployment
facilitates dynamic scaling without any manual intervention, as demonstrated in [Sch+21].

5https://hps.vi4io.org/_media/teaching/summer_term_2023/pchpc-student/valerius_
mattfeld_bianca_vetter_report.pdf
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Serverless functions are usually put in container images, which make them portable
and separate from other programs, [Oak+18]. The functions can be used in various
programming languages, [Sch+21].

7.2 Functions-as-a-Service Frameworks

Since various Open Source FaaS frameworks utilize the advantages of Kubernetes, those
frameworks stand out the most. Some notable examples are:

• knative.dev (supporting languages like Go, Elixir, Java, etc.), [23a]

• nuclio.io — With a data science focus and completely written in Go, [23b]

• openfaas.com — Also using Go, [ope23]

• fission.io — Built with Go, [fis23]

Since Kubernetes is written in Go, those frameworks might choose Go as their primary
language because they stay within one ecosystem and language.

7.3 Serverless-Functions in HPC

With Kubernetes being the main platform for investigating serverless functions for modern
high-performance computing, two crucial issues emerge: Response Times and Schedul-
ing.[LG22; DKK22; PA22]

[LG22] and [PA22] explore different approaches to resolve those issues.

[LG22] points out, that firstly, Kubernetes sees HPC workloads as batch jobs. The
author explains that the performance nuances of containerized HPC workloads are not
yet fully explored. Moreover, the author goes into detail, that Kubernetes-native batch-
jobs are not designed for supporting a fully featured HPC application efficiently, and that
Kubernetes schedules the jobs not in workloads, but in pods. To resolve this, the author
mentions a tool, Kubeflow MPI6, which helps to launch HPC workloads. In combination
with fine-grained Kubernetes policies, [LG22] can produce a reduction in response times
of HPC workloads by 35% in Kubernetes, though basing those results on small-scales
MPI jobs for single nodes. Lastly, [LG22], emphasizes, that a precise control over mixed
workloads, e.g., I/O applications proves to be a challenge to be resolved.

An alternative approach is presented by [PA22], who presents an alternative architec-
ture, “Shoc”, which is designed specifically for HPC workloads, while maintaining server-
less access for the function invocators.

[PA22] builds the architecture of Shoc on Singularity[KSB17] and Docker in combina-
tion with the scheduling and resource-management capabilities of Kubernetes. The author
states, that this architecture allows CPU as well as data-intensive workloads, without the
need of a complex HPC infrastructure. Moreover, Shoc seems to bypass the scheduling
limitations, like [LG22] discussed. Furthermore, [PA22] mentions, that Kubernetes’ abil-
ity to user non-Docker containers, like Singularity-based containers, as aforementioned,
could be beneficial to the HPC world, since they are more common. Leveraging the

6https://www.kubeflow.org/docs/components/training/mpi/
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kube-autoscaler, the Shoc architecture can instantiate and join nodes on demand, al-
lowing massive scaling.[PA22]

In summary, serverless functions with a Kubernetes base represent a modern alterna-
tive to traditional HPC infrastructures. Though, critical issues need to be resolved for
those approaches to become a mature and reliable option; like the response-time problem
mentioned above, and more testing for mixed workloads.

8 Discussion
We have explored Go from its origins, syntax design, and key benefits through to its use-
cases in real-life applications and HPC. The result is, that Go appears to be a scalable
and cost-effective language which is also primarily used in Container virtualization and
orchestration.

Subsequently, we have explored possible candidates for HPC programming languages
and its requirements to program an effective a performant application. During this, we
have assessed that it is a requirement-based decision, depending on the skill and experience
of the development team as well as time resources to optimize for lower-level languages
like C, and, if not, another language. We categorized Go in between lower-level languages
and interpreted languages like Java.

After that, we examined MPI library wrappers for the most prominent libraries -
OpenMPI and mpich - and how wrappers generally work. We took those findings into
account when briefly analyzing a Go MPI wrapper library for its structure in regard of
interfacing with one of those two libraries. While Go having a suboptimal process of
binding to C libraries in general, we further accessed that guaranteeing bug-safety, with
importance of memory access problems, the developer of the bindings library must have
an intricate comprehension of the workings of HPC clusters and MPI libraries in general.
Furthermore, the bindings must be implemented in such a way, that it circumvents the
default garbage collection mechanisms of Go to avoid accidental object removal from a
worker machine.

Lastly, we have explored the concept of using Serverless Functions in HPC clusters and
Kubernetes with HPC loads in the context of Go to find a reasoning for the popularity
of that language in this regard. We found that two problems are prominent, when using
Kubernetes with HPC workloads, which are response time and scheduling. Two papers
explored this project, one of which indicated that a cluster with the right set of policies
can successfully reduce response times for small single-node workloads by up to 35%, and
the other, that a composition of tools named "Shoc" can provide an architecture capa-
ble of scaling, processing CPU intensive and data-intensive workloads, while bypassing
scheduling limitations of the previous paper. All authors mentioned in section 7.3 criticize
a severe lack of research in that area.

While Go turns out to be an excellent choice for developing concurrency-based ap-
plications, its simple syntax and other benefits come with some caveats when it stays in
context to HPC. While its garbage collection, shared memory model and compiled nature
make it a delightful language to write applications in, those features are disruptive when
developing applications for HPC, especially when it comes to interfacing with C libraries
like OpenMPI. Because it’s basically forcing the developer to manage memory to a certain
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degree, its usefulness in that regard is questionable compared to C/C++ or Rust.
mpi4py, for example, is a mature MPI library for Python, providing similar develop-

ment speeds to Go, while omitting compilation shenanigans as well as the manual process
of managing object garbage collection from shared memory. Furthermore, rsmpi, though
it still being incomplete, is easier to compile and - when observing the Rust part - safe to
write, while providing the same benefit of a compiled executable.

Those insights indicate that Go appears to be unbeatable when it comes to infrastruc-
ture code, but provides little upsides when it comes to actual HPC applications. Outdated,
unmaintained, undocumented, and incomplete wrapper libraries make it challenging to
develop applications with Go, which mitigates the entire teleology of the language - it
being simple, accessible and fast.

Since Go’s concurrency capabilities could still be leveraged for HPC, a properly devel-
oped wrapper could unlock the potential of that language. Writing a "wrapper-wrapper
library", for example, a Go library utilizing rsmpi, could reduce the issues of memory
safety and compilation difficulties when developing HPC applications.

9 Conclusion
While Go is an accessible and comparably performant language, currently, as of the time
of writing, it is not a suitable language to write HPC applications in. This is due to
the difficult implementation of a fitting MPI library into Go’s language design, namely its
garbage-collector in combination with its single-machine memory model. Go can introduce
bugs, when the library developer and HPC application developer do not fully understand
the underlying architecture of the libraries and how HPC works in general.

The lack of research in that regard, as well as the lack of maintenance for correspond-
ing wrapper libraries, can be traced back to those issues.

However, it fits perfectly with infrastructure code and is heavily in use with modern
containerization and orchestration software. This is where Go in the aspect of HPC shines
- as an infrastructure management language.

Go could possibly benefit and leverage its potential with a proper wrapper library,
perhaps implementing a safe underlying wrapper written in Rust with rsmpi.
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