
SH

∞

Seminar Report

Go in High Performance Computing

Valerius Mattfeld

MatrNr: 11580056

Supervisor: Jonathan Decker

Georg-August-Universität Göttingen
Institute of Computer Science

April 22, 2024

Abstract
Go is a popular, statically typed and compiled language with an easy to learn syntax
and unique concurrency model. Therefore, it could provide some beneficial contributions
to the High-Performance Computing (HPC) ecosystem. This report investigates the use
cases and practicality of Go in modern cloud computing in regard to serverless functions,
containerization, orchestration and HPC. The challenge resides in providing Go with a
robust Message Passing Interface (MPI) library, which effectively manages the language’s
typical memory model and garbage collection, as it gets in the way of harnessing Go’s
potential in HPC. Currently, research and development in the HPC application area is
stagnated and fully focused on cloud infrastructure. The HPC ecosystem could benefit
from a language with excellent concurrency support on worker nodes. A wrapper library
with an accessible API, which manages the language given caveats, could unlock Go’s
potential in HPC and improve the developer experience.

i

Declaration on the use of ChatGPT and comparable tools
in the context of examinations

In this work I have used ChatGPT or another AI as follows:

□ Not at all

□ During brainstorming

□ When creating the outline

□ To write individual passages, altogether to the extent of 0% of the entire text

□ For the development of software source texts

□ For optimizing or restructuring software source texts

□ For proofreading or optimizing

✓□ Further, namely: The usage of semanticscolar.org1 for searching and discovering
scientific literature. LanguageTool.org2 for finding typos and incorrect spelling.

I hereby declare that I have stated all uses completely.
Missing or incorrect information will be considered as an attempt to cheat.

1https://www.semanticscholar.org/
2https://languagetool.org/

ii

https://www.semanticscholar.org/
https://languagetool.org/

Contents

List of Tables iv

List of Figures iv

List of Listings iv

List of Abbreviations v

1 Introduction 1

2 Background and Motivation 1

3 Benefits of using Go in Cloud Environments 1
3.1 The Go Programming Language . 2
3.2 Use-Cases . 3
3.3 Scalability and Cost-Effectiveness . 3

4 Go in Container Virtualization 3
4.1 Docker . 3
4.2 Kubernetes . 4

5 Usage of Go in HPC 4
5.1 Choosing a programming language for HPC 4
5.2 Go as a programming language for HPC 5

6 Go Libraries in HPC 5
6.1 MPI Library Wrappers . 6
6.2 Garbage Collection and Shared Memory in Go for HPC 7

7 Serverless Functions in HPC with Go 8
7.1 Serverless functions . 8
7.2 Functions-as-a-Service Frameworks . 9
7.3 Serverless-Functions in HPC . 9

8 Discussion 10

9 Conclusion 11

References 12

A Code samples A1

iii

List of Tables

List of Figures

List of Listings
1 "Hello" in Go . 2
2 Calling a function as a goroutine . 2
3 Defining the addition function and business logic in Rust, [Gou] 6
4 Interfacing with the Rust-implemented function in C, adding two unsigned

32-bit integers, [Gou] . 6
5 Go Interfacing with OpenMPI, [Bro23] . 7

iv

List of Abbreviations
API Application Programming Interface

CUDA Compute Unified Device Architecture

FFI Foreign-Function Interface

FaaS Functions-as-a-Service

HPC High-Performance Computing

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

MPI Message Passing Interface

SQL Structured Query Language

XML Extended Markup Language

v

Go in High Performance Computing

1 Introduction
This report explores the Go programming language over various fields, starting with its
core benefits, its use in cloud computing, and its role in HPC. It is a statically compiled
language with a unique concurrency and memory model.[23c] Additionally, Go embodies
a simple syntax alongside an in-build garbage collector.[23c] This report investigates the
language’s potential for HPC applications.

The report introduces the Go programming language with its origins and core traits,
and benefits in section 3. Then continue to section 4 with Go’s relevance in container
virtualization and usage in HPC. After that, the report discusses the suitability of Go in
HPC as an application language along with its available MPI wrappers and the implied
challenges in section 5-6.

Lastly, in section 7 the report explores the usage of Go-based serverless function frame-
works in combination with Kubernetes, which attempt to process HPC workloads in a
modern fashion.

2 Background and Motivation
When it comes to the usage of Go in HPC, and, by extension, MPI applications, the
available source material is sparsely populated. Aside from one source, namely [BW14],
no serious attempts or utilization of Go with MPI beside some unmaintained and outdated
OpenMPI [ope] wrapper libraries are present on the internet or research databases.

Since Go is an accessible, statically typed, and compiled language with a rich stan-
dard library with a modern concurrency model, it lately became quite popular among
developers. [Cas22; 23c]

Having a language capable of an easy-to-use concurrency model could benefit the
development of faster, and single-node parallelism-focused HPC applications. With that,
the question arises, why Go does have a limited popularity when it comes to MPI related
runtime applications and research.

Furthermore, when viable, Go could enable novice-programmers to find a stepping-
stone into HPC application development without having advanced knowledge of lower-
level programming languages like C or C++.

Moreover, with the push of moving HPC workloads into Kubernetes clusters, [PA22;
LG22] and the rising demand for serverless functions, [Sch+21] Go could offer an entry
point for developers and researchers planning to contribute to this kind of projects.

3 Benefits of using Go in Cloud Envi-
ronments

This section briefly elaborates on the origins of the Go programming language. After
that, we briefly examine the language’s core traits and benefits. Finally, we will explore
how Go can benefit applications in becoming more scalable and cost-effective.

Section 3 Valerius Mattfeld 1

Go in High Performance Computing

3.1 The Go Programming Language

The Go programming language, initially authored by Robert Pike in 2007, is a compiled
programming language. [god24]

Since then, it has been under active development by Google and Open-Source main-
tainers. [god24]

The motivation for creating Go as a programming language was to resolve issues and
criticism regarding programming languages at the time while maintaining their core ben-
efits. [god24] Those benefits included the static typing of the C programming language
and the readability of Python while creating a design that includes networking and multi-
processing capabilities in a language-native manner. Go was released in 2012 with version
1.0.[god24]

Go’s most vital benefits include being a language with simple syntax, type inference,
fast compile times, and state-of-the-art concurrency design.[23c; god24] This concurrency
design is language native and partly shown by using the go keyword to start a green thread
for an asynchronous function call; an example can be found in Listing 2. An example of
the Go syntax and a simple "Hello" application can be found in Listing 1.

1 package main // entrypoint package
2

3 import "fmt"
4

5 func main() { // application entry point
6 fmt.Println("Hello")
7 }

Listing 1: "Hello" in Go

1 package main
2

3 func routine() {
4 // ...
5 }
6

7 func main() {
8 go routine()
9 }

Listing 2: Calling a function as a goroutine

Furthermore, Go offers in-build tools, like a race-checker, benchmarkers, a minimal
package manager, profilers, static code analysis, and a rich standard library, which en-
hances the developer’s experience in writing Go applications.[god24; 23c] Another inter-
esting trait is that Go has a language-specific memory model.[god24; Bit22]

Go’s compiled nature results in benefits, like fast startup times and seamless deploy-
ment on the target OS architecture, since it omits the need for an interpreter. [god24]

Section 3 Valerius Mattfeld 2

Go in High Performance Computing

This results in the advantage that, while Go is a garbage-collected language, it generally
outperforms interpreted languages.

3.2 Use-Cases

Go’s robust ecosystem, including support for industry-relevant technologies like Hypertext
Transfer Protocol (HTTP), Extended Markup Language (XML), JavaScript Object Nota-
tion (JSON), and Structured Query Language (SQL) databases, makes it, in combination
with the benefits mentioned earlier, a popular choice in big tech.[god]

Some concretizations include but are not limited to Go making up over 75% of project
code at the Cloud Native Computing Foundation, its applications in Google Cloud -
natively supporting it through their product line, powering the serverless Credit-Offer-API
at Capital One, and providing the vehicle for Dropbox’s business logic for performance-
critical backend sections.[god]

Go shines when used with containerization software, like Docker and, by extension,
the container-orchestration software Kubernetes. This will be elaborated in section 4.

3.3 Scalability and Cost-Effectiveness

As mentioned above, Go’s benefits make it a fitting choice for cloud-based applications.
This is particularly advantageous when leveraging features such as goroutines and

channels, which enables the creation of easily maintainable microservices.[23c]
Furthermore, due to its memory model and garbage collection, Go’s effective resource

allocation allows for the more efficient assignment of available hardware quotas.[God24]
This results in enhanced scalability and cost efficiency within cloud environments.[god;
God24]

Lastly, the easy syntax and rich ecosystem, due to the package manager’s decentralized
nature — it only requires a reference to the library’s git repository — allows quick and
independent development of robust applications.[God24]

4 Go in Container Virtualization
When it comes to virtualization and Go, some names immediately come to mind: Kuber-
netes and Docker.

4.1 Docker

Docker3, being a containerization and, by extension, virtualization software, is of cru-
cial importance for the modern tech industry. It comes with several benefits, such as
easy packaging, portability, and scalability of applications. Docker does not require a
Hypervisor in order to run containers. It utilizes the underlying operating system di-
rectly.[Par+16] Dockers’ engine is written in Go, which plays a key role in its efficient
performance and resource management, due to the benefits of the language mentioned
above.[23d; 22]

3https://docker.com/

Section 4 Valerius Mattfeld 3

https://docker.com/

Go in High Performance Computing

4.2 Kubernetes

Kubernetes, on the other hand, is an open-source container orchestration platform writ-
ten to a severe extent in Go, that automates many of the manual processes involved in
deploying, managing, and scaling containerized applications.[Kub] Important to note is
that Kubernetes is compatible with Docker containers, but not limited to them. It is
also capable of running Singularity-based containers, which are used in the HPC sector
as well, [PA22]. Go allows the concurrent and management and orchestration process of
those containers or pods, making it a suitable programming language to scale a Kuber-
netes infrastructure.

Since both, Docker and Kubernetes, are written in Go, one might assume, that Go is
a highly suitable language for container virtualization and orchestration tasks, possibly a
great choice for HPC applications.

5 Usage of Go in HPC
This section briefly discusses the process of choosing a programming language for HPC
and discusses the viability of Go as a fitting language in that aspect.

5.1 Choosing a programming language for HPC

In HPC applications, using the right programming language can significantly impact the
yield of results concerning the resources used.

Languages like FORTRAN turned out to be quite adequate for its usage in HPC,
[Loh10]. In fact, [Loh10] et al. state that programming challenges stem mostly from
factors other than the programming language, which is FORTRAN itself. The author,
however, does not elaborate on the performance implications of interpreted languages used
in HPC. Moreover, [Loh10] encourages that readability, variability, and maintainability
are crucial factors when developing HPC applications.

The popularity of statically typed and compiled languages like C and C++ in HPC is
indicated by the popularity of MPI SDKs and their respective wrappers written in them.
Those include, but are not limited to:

• MPICH, [mpi]

• OpenMPI, [ope]

• mpi4py, a Python-Wrapper for the aforementioned, [DF21]

• rsmpi, a Rust-Wrapper for the aforementioned, [24]

Since a strong performance boost compared to interpreted or runtime-dependent lan-
guages like Java is contested [Mer+15] et al., C, C++, and FORTRAN enable the devel-
oper of fine-grained control on how the program works down to the deepest level.

Returning to [Loh10] et al., [Vir10] argues that given a fixed timeframe for developers,
a language like Java can outperform a C application. [Vir10] also argues, similarly to
[Mer+15], that a runtime-dependent language, in that case Java, is not significantly less
performant than C.

Section 5 Valerius Mattfeld 4

Go in High Performance Computing

Choosing a language based on the use case and the application requirements may be
wiser rather than just finding the perfect language for every use case. Using a lower-
level language like C or C++ for HPC is possibly more efficient when there is no strict
timeframe, high requirements on throughput, and capabilities for optimization.

Otherwise, one may consider an interpreted or runtime-dependent language.

5.2 Go as a programming language for HPC

At first glance, Go presents itself as a compelling option for developing HPC applica-
tions, particularly when the demands do not necessitate intricate control over low-level
instructions.

This assertion gains confidence when considering the general usage of MPI libraries
in many computational tasks, where Go has its own libraries in the form of Go-MPI
[Weg23]and gompi [Bro23].

However, an apparent drawback emerges in the absence of native GPU support within
Go.

This limitation can prove inhibitive for applications requiring the usage of GPUs for
accelerated computation.

Despite this, innovative strides have been made to bridge this gap by leveraging
Compute Unified Device Architecture (CUDA) and OpenGL4 through C interfaces in
conjunction with MPI implementations such as MPICH and Open MPI [BW14].

Moreover, Go’s modern and straightforward approach to application development
makes it an attractive candidate for swiftly prototyping and deploying HPC solutions,
particularly those not bound by stringent performance requirements.

By bypassing the overhead associated with interpreters or runtime environments, Go
appears as a potentially faster alternative to languages like Java or Python for certain
HPC use cases.

The modern and easy approach to writing applications on Go makes it a fitting can-
didate for rapidly developed, non-performance-critical HPC applications.

Omitting the need for an interpreter or a runtime, Go can be an even faster solution
than Java or Python implementations.

6 Go Libraries in HPC
This section delves into the difficulties of interfacing with MPI libraries through language
wrappers and the challenges Go’s garbage collection poses in HPC contexts.

It shows how Rust and Go interact with C and how performance issues and incomplete
functionality mappings are often associated with such wrappers.

Furthermore, it discusses the complexities of binding C functions in Go, as well as the
implications for cross-platform compatibility. Potential issues encountered in distributed
computing environments are illustrated by the impact of Go’s shared memory model
and garbage collection on HPC applications. The section shows how important language
choice and memory management strategies are when making HPC applications.

4https://www.opengl.org/

Section 6 Valerius Mattfeld 5

https://www.opengl.org/

Go in High Performance Computing

6.1 MPI Library Wrappers

Almost every language has the capability to use an Foreign-Function Interface (FFI) to
interface with lower-level languages like C, or C++. This is especially important when it
comes to HPC for enabling other languages to interface with MPI libraries, like OpenMPI
or mpich.

A library wrapper essentially packages the base library, which in that case would
be OpenMPI or mpich, in such a way that the functionality is accessible inside the target
language. This is done by using the FFI aspect of the target language to link the functions
of the underlying library to their respective counterpart. This allows the invocation of the
functions and capabilities of the underlying library from the target language, running the
compiled libraries code with the defined parameters, essentially forwarding the parameters
to the library for processing.

One example, calling Rust from C, is [Gou], interfacing with a C program over Rusts’
function definitions. Listing 3 shows, how a simple addition function is defined in Rust.
The C counterpart, displayed in Listing 4, calling the Rust-defined function, matching
the data-types from a Rust-compiled shared library; effectively outsourcing the function
call processing to Rust while running the C program.

1 #[no_mangle]
2 pub extern "C" fn addition(a: u32, b: u32) -> u32 {
3 a + b
4 }

Listing 3: Defining the addition function and business logic in Rust, [Gou]

1 #include <stdio.h>
2 #include <stdint.h>
3 #include <inttypes.h>
4 extern uint32_t addition(uint32_t, uint32_t);
5 int main(void) {
6 uint32_t sum = addition(1, 2);
7 printf("%" PRIu32 "\n", sum);
8 }

Listing 4: Interfacing with the Rust-implemented function in C, adding two unsigned
32-bit integers, [Gou]

Applying the same idea, but going from the C/C++ implementations of OpenMPI or
mpich, libraries like mpi4py or rsmpi, as mentioned above, allow the respective languages
to leverage the embedded libraries’ capabilities.

One crucial implication, which results from this programming pattern is, that the
invocation of the embedded functions is always proxied by the overlaying language, which
is possibly slower, effecting the performance of the HPC application compared to pure
C/C++ implementations using those libraries directly. Furthermore, library wrappers

Section 6 Valerius Mattfeld 6

Go in High Performance Computing

tend to be incomplete in their functionality-mapping, as rsmpi and gosl indicate, [24]
[Cpm].

Binding C functions in Go is a fairly tricky process. It involves the usage of the cgo
command, which comes with the Go development suite.[God24]

First, it involves employing the C pseudo-package and defining the corresponding
data types for their counterparts in the embedded library. Then, the developer needs to
respect the libraries and C-specific traits when mapping the Application Programming
Interface (API) to every method, respecting the behavior and data-types of the underlying
functions.[God24]

Listing 5 shows, how gompi achieves this by interfacing with OpenMPI. Compatibility
flags are displayed at the top of the snippet, while the build-process, flags, and the start
of the pseudo-package follow.

1 //go:build !windows
2 // +build !windows
3

4 //go:generate stringer -type=DataType
5 //go:generate stringer -type=Op
6 // ...
7 /*
8 #include "mpi.h"
9

10 MPI_Comm World = MPI_COMM_WORLD;
11 MPI_Status* StIgnore = MPI_STATUS_IGNORE;
12

13 #define DOUBLE_COMPLEX double complex
14 */
15 import "C"

Listing 5: Go Interfacing with OpenMPI, [Bro23]

The potential drawback of tying C code to Go may pertain to its compatibility across
multiple platforms, as it becomes bound to the platform compatibility of the underlying
C codes.

In summary, the complexity of interfacing with C libraries in Go is heavily depen-
dent on the embedded counterpart. To create a properly defined mapping, it is necessary
to know the difficulties and behavior of the functionality and aspects of the library be-
forehand. In the context of MPI, it is imperative that the developer is cognizant of the
characteristics of the underlying library and its interaction with the HPC cluster, and
may be able to modify the Go source code to align with this behavior. Furthermore,
when incorporating C code into Go, it may compromise its compatibility with various
platforms.

6.2 Garbage Collection and Shared Memory in Go for HPC

Characteristic of Go’s concurrency model is its shared memory model and built-in garbage
collection. Since a green-thread-similar model is utilized inside the goroutines, the require-

Section 6 Valerius Mattfeld 7

Go in High Performance Computing

ment for a memory-model capable of allowing such concurrency became a necessity.[God]
A part of the official Go documentation discusses a crucial aspect of Go programming:

handling memory safely and effectively.[God] It discusses Go’s features to ensure correct
memory handling, decreasing the probability of memory-related errors like segmentation
faults and buffer overflows. Moreover, Go distinguishes between "kinds" of memory access;
for example, read-like and write-like operations being handled with different priorities,
mitigating the chance of data races. This allows a seamless and safe development of
concurrent applications. However, an essential context in the aspect of HPC is that the
shared memory model refers to being shared between threads, not machines.

Since multiple goroutines do have access to the same memory space, garbage-collection
will also be handled on the same space, [God; Bit22].

This introduces the problem of the garbage collector not being able to effectively assess
an object’s lifetime when used in HPC with MPI libraries. This problem was observed
last year during the development of a traffic simulator, initially written in Go for HPC.5

In the referenced report, some objects representing a vehicle in that simulation were
garbage collected because they were sent to other machines inside the cluster. The origin
machine had no way of knowing if the corresponding vehicle still existed. That issue
displayed an example of why choosing the right language for the requirements becomes
so crucial.

To summarize, Go allows the development of memory-safe and efficient applications on
a single machine but reaches its limitations when being deployed onto HPC clusters with
high throughput since the automatic garbage-collection process needs to be considered
and managed by the developer.

7 Serverless Functions in HPC with Go
In this section, we explore what serverless functions are and how they are usually deployed.
Subsequently, we examine prominent Functions-as-a-Service (FaaS) frameworks. Finally,
we examine solutions for HPC involving serverless functions for processing workloads.

7.1 Serverless functions

A new trend in cloud computing with rising popularity is the utilization of serverless
functions.[Sch+21] Serverless functions are a model in which the cloud provider dynam-
ically manages the allocation of available hardware resources.[Sch+21] These functions
are initiated by events or requests and execute code provided by the user, usually by an
endpoint invocation.[Sch+21]

Several key traits define the characteristics of serverless applications.
First, we have event-driven execution of the stateless function. This ensures that

only necessary actions are undertaken, thereby aiding in the efficient utilization of re-
sources.[Sch+21]

Subsequently, the automated scaling of the available resources to a specific deployment
facilitates dynamic scaling without any manual intervention, as demonstrated in [Sch+21].

5https://hps.vi4io.org/_media/teaching/summer_term_2023/pchpc-student/valerius_
mattfeld_bianca_vetter_report.pdf

Section 7 Valerius Mattfeld 8

https://hps.vi4io.org/_media/teaching/summer_term_2023/pchpc-student/valerius_mattfeld_bianca_vetter_report.pdf
https://hps.vi4io.org/_media/teaching/summer_term_2023/pchpc-student/valerius_mattfeld_bianca_vetter_report.pdf

Go in High Performance Computing

Serverless functions are usually put in container images, which make them portable
and separate from other programs, [Oak+18]. The functions can be used in various
programming languages, [Sch+21].

7.2 Functions-as-a-Service Frameworks

Since various Open Source FaaS frameworks utilize the advantages of Kubernetes, those
frameworks stand out the most. Some notable examples are:

• knative.dev (supporting languages like Go, Elixir, Java, etc.), [23a]

• nuclio.io — With a data science focus and completely written in Go, [23b]

• openfaas.com — Also using Go, [ope23]

• fission.io — Built with Go, [fis23]

Since Kubernetes is written in Go, those frameworks might choose Go as their primary
language because they stay within one ecosystem and language.

7.3 Serverless-Functions in HPC

With Kubernetes being the main platform for investigating serverless functions for modern
high-performance computing, two crucial issues emerge: Response Times and Schedul-
ing.[LG22; DKK22; PA22]

[LG22] and [PA22] explore different approaches to resolve those issues.

[LG22] points out, that firstly, Kubernetes sees HPC workloads as batch jobs. The
author explains that the performance nuances of containerized HPC workloads are not
yet fully explored. Moreover, the author goes into detail, that Kubernetes-native batch-
jobs are not designed for supporting a fully featured HPC application efficiently, and that
Kubernetes schedules the jobs not in workloads, but in pods. To resolve this, the author
mentions a tool, Kubeflow MPI6, which helps to launch HPC workloads. In combination
with fine-grained Kubernetes policies, [LG22] can produce a reduction in response times
of HPC workloads by 35% in Kubernetes, though basing those results on small-scales
MPI jobs for single nodes. Lastly, [LG22], emphasizes, that a precise control over mixed
workloads, e.g., I/O applications proves to be a challenge to be resolved.

An alternative approach is presented by [PA22], who presents an alternative architec-
ture, “Shoc”, which is designed specifically for HPC workloads, while maintaining server-
less access for the function invocators.

[PA22] builds the architecture of Shoc on Singularity[KSB17] and Docker in combina-
tion with the scheduling and resource-management capabilities of Kubernetes. The author
states, that this architecture allows CPU as well as data-intensive workloads, without the
need of a complex HPC infrastructure. Moreover, Shoc seems to bypass the scheduling
limitations, like [LG22] discussed. Furthermore, [PA22] mentions, that Kubernetes’ abil-
ity to user non-Docker containers, like Singularity-based containers, as aforementioned,
could be beneficial to the HPC world, since they are more common. Leveraging the

6https://www.kubeflow.org/docs/components/training/mpi/

Section 7 Valerius Mattfeld 9

https://www.kubeflow.org/docs/components/training/mpi/

Go in High Performance Computing

kube-autoscaler, the Shoc architecture can instantiate and join nodes on demand, al-
lowing massive scaling.[PA22]

In summary, serverless functions with a Kubernetes base represent a modern alterna-
tive to traditional HPC infrastructures. Though, critical issues need to be resolved for
those approaches to become a mature and reliable option; like the response-time problem
mentioned above, and more testing for mixed workloads.

8 Discussion
We have explored Go from its origins, syntax design, and key benefits through to its use-
cases in real-life applications and HPC. The result is, that Go appears to be a scalable
and cost-effective language which is also primarily used in Container virtualization and
orchestration.

Subsequently, we have explored possible candidates for HPC programming languages
and its requirements to program an effective a performant application. During this, we
have assessed that it is a requirement-based decision, depending on the skill and experience
of the development team as well as time resources to optimize for lower-level languages
like C, and, if not, another language. We categorized Go in between lower-level languages
and interpreted languages like Java.

After that, we examined MPI library wrappers for the most prominent libraries -
OpenMPI and mpich - and how wrappers generally work. We took those findings into
account when briefly analyzing a Go MPI wrapper library for its structure in regard of
interfacing with one of those two libraries. While Go having a suboptimal process of
binding to C libraries in general, we further accessed that guaranteeing bug-safety, with
importance of memory access problems, the developer of the bindings library must have
an intricate comprehension of the workings of HPC clusters and MPI libraries in general.
Furthermore, the bindings must be implemented in such a way, that it circumvents the
default garbage collection mechanisms of Go to avoid accidental object removal from a
worker machine.

Lastly, we have explored the concept of using Serverless Functions in HPC clusters and
Kubernetes with HPC loads in the context of Go to find a reasoning for the popularity
of that language in this regard. We found that two problems are prominent, when using
Kubernetes with HPC workloads, which are response time and scheduling. Two papers
explored this project, one of which indicated that a cluster with the right set of policies
can successfully reduce response times for small single-node workloads by up to 35%, and
the other, that a composition of tools named "Shoc" can provide an architecture capa-
ble of scaling, processing CPU intensive and data-intensive workloads, while bypassing
scheduling limitations of the previous paper. All authors mentioned in section 7.3 criticize
a severe lack of research in that area.

While Go turns out to be an excellent choice for developing concurrency-based ap-
plications, its simple syntax and other benefits come with some caveats when it stays in
context to HPC. While its garbage collection, shared memory model and compiled nature
make it a delightful language to write applications in, those features are disruptive when
developing applications for HPC, especially when it comes to interfacing with C libraries
like OpenMPI. Because it’s basically forcing the developer to manage memory to a certain

Section 8 Valerius Mattfeld 10

Go in High Performance Computing

degree, its usefulness in that regard is questionable compared to C/C++ or Rust.
mpi4py, for example, is a mature MPI library for Python, providing similar develop-

ment speeds to Go, while omitting compilation shenanigans as well as the manual process
of managing object garbage collection from shared memory. Furthermore, rsmpi, though
it still being incomplete, is easier to compile and - when observing the Rust part - safe to
write, while providing the same benefit of a compiled executable.

Those insights indicate that Go appears to be unbeatable when it comes to infrastruc-
ture code, but provides little upsides when it comes to actual HPC applications. Outdated,
unmaintained, undocumented, and incomplete wrapper libraries make it challenging to
develop applications with Go, which mitigates the entire teleology of the language - it
being simple, accessible and fast.

Since Go’s concurrency capabilities could still be leveraged for HPC, a properly devel-
oped wrapper could unlock the potential of that language. Writing a "wrapper-wrapper
library", for example, a Go library utilizing rsmpi, could reduce the issues of memory
safety and compilation difficulties when developing HPC applications.

9 Conclusion
While Go is an accessible and comparably performant language, currently, as of the time
of writing, it is not a suitable language to write HPC applications in. This is due to
the difficult implementation of a fitting MPI library into Go’s language design, namely its
garbage-collector in combination with its single-machine memory model. Go can introduce
bugs, when the library developer and HPC application developer do not fully understand
the underlying architecture of the libraries and how HPC works in general.

The lack of research in that regard, as well as the lack of maintenance for correspond-
ing wrapper libraries, can be traced back to those issues.

However, it fits perfectly with infrastructure code and is heavily in use with modern
containerization and orchestration software. This is where Go in the aspect of HPC shines
- as an infrastructure management language.

Go could possibly benefit and leverage its potential with a proper wrapper library,
perhaps implementing a safe underlying wrapper written in Rust with rsmpi.

Section 9 Valerius Mattfeld 11

Go in High Performance Computing

References
[22] Which Part of Docker Written in the GO Language? - General Discussions.

Docker Community Forums. Oct. 8, 2022. url: https://forums.docker.
com/t/which-part-of-docker-written-in-the-go-language/129912
(visited on 04/22/2024).

[23a] Knative Documentation. Knative, May 31, 2023. url: https://github.com/
knative/docs (visited on 05/31/2023).

[23b] Nuclio - "Serverless" for Real-Time Events and Data Processing. nuclio, May 30,
2023. url: https://github.com/nuclio/nuclio (visited on 05/31/2023).

[23c] The Go Programming Language. Go, July 5, 2023. url: https://github.
com/golang/go (visited on 07/05/2023).

[23d] The Moby Project. Moby, July 5, 2023. url: https://github.com/moby/
moby (visited on 07/05/2023).

[24] Rsmpi/Rsmpi. rsmpi, Apr. 12, 2024. url: https://github.com/rsmpi/
rsmpi (visited on 04/20/2024).

[Bit22] Frederico Bittencourt. Concurrency in Go: Shared Memory. Oct. 15, 2022.
url: https://blog.fredrb.com/2022/10/15/go-concurrency-shared-
memory/ (visited on 04/21/2024).

[Bro23] Seth Bromberger. Sbromberger/Gompi. Sept. 5, 2023. url: https://github.
com/sbromberger/gompi (visited on 10/14/2023).

[BW14] Alexander Beifuss and Johann Weging. A Golang Wrapper for MPI. Univer-
stiy of Hamburg, Apr. 4, 2014.

[Cas22] David Cassel. What Made Golang So Popular? The Language’s Creators Look
Back. The New Stack. May 29, 2022. url: https://thenewstack.io/what-
made-golang-so-popular-the-languages-creators-look-back/ (visited
on 04/22/2024).

[Cpm] Cpmech/Gosl. Mpi Package - Github.Com/Cpmech/Gosl/Mpi - Go Packages.
url: https://pkg.go.dev/github.com/cpmech/gosl/mpi#section-
readme (visited on 07/06/2023).

[DF21] Lisandro Dalcin and Yao-Lung L. Fang. Mpi4py: Status Update After 12 Years
of Development. 2021. doi: 10.1109/mcse.2021.3083216. url: https:
//github.com/mpi4py/mpi4py (visited on 04/20/2024).

[DKK22] Jonathan Decker, Piotr Kasprzak, and Julian Martin Kunkel. “Performance
Evaluation of Open-Source Serverless Platforms for Kubernetes”. In: Algo-
rithms 15.7 (2022).
“High-performance computing (HPC) clusters can profit from improved server-
less resource sharing capabilities compared to reservation-based systems such
as Slurm.” (Decker et al., 2022, p. 1)
“However, before running self-hosted serverless platforms in HPC becomes a
viable option, serverless platforms must be able to deliver a decent level of
performance.” (Decker et al., 2022, p. 1)

Section 9 Valerius Mattfeld 12

https://forums.docker.com/t/which-part-of-docker-written-in-the-go-language/129912
https://forums.docker.com/t/which-part-of-docker-written-in-the-go-language/129912
https://github.com/knative/docs
https://github.com/knative/docs
https://github.com/nuclio/nuclio
https://github.com/golang/go
https://github.com/golang/go
https://github.com/moby/moby
https://github.com/moby/moby
https://github.com/rsmpi/rsmpi
https://github.com/rsmpi/rsmpi
https://blog.fredrb.com/2022/10/15/go-concurrency-shared-memory/
https://blog.fredrb.com/2022/10/15/go-concurrency-shared-memory/
https://github.com/sbromberger/gompi
https://github.com/sbromberger/gompi
https://thenewstack.io/what-made-golang-so-popular-the-languages-creators-look-back/
https://thenewstack.io/what-made-golang-so-popular-the-languages-creators-look-back/
https://pkg.go.dev/github.com/cpmech/gosl/mpi#section-readme
https://pkg.go.dev/github.com/cpmech/gosl/mpi#section-readme
https://doi.org/10.1109/mcse.2021.3083216
https://github.com/mpi4py/mpi4py
https://github.com/mpi4py/mpi4py

Go in High Performance Computing

“Other researchers have already pointed out that there is a distinct lack of
studies in the area of comparative benchmarks on serverless platforms, espe-
cially for open-source self-hosted platforms.” (Decker et al., 2022, p. 1). issn:
1999-4893. doi: 10.3390/a15070234. url: https://www.mdpi.com/1999-
4893/15/7/234.

[fis23] fission. Fission/Fission: Fast and Simple Serverless Functions for Kubernetes.
2023. url: https://github.com/fission/fission (visited on 05/31/2023).

[God] Homepage Go.dev. The Go Memory Model - The Go Programming Language.
url: https://go.dev/ref/mem (visited on 04/21/2024).

[god] go.dev. Go for Cloud & Network Services - The Go Programming Language.
url: https://go.dev/solutions/cloud (visited on 04/19/2024).

[God24] Go.dev. Cgo Command - Cmd/Cgo - Go Packages.
“Cgo enables the creation of Go packages that call C code.” (Go.dev, 2024, p.
1)
“To use cgo write normal Go code that imports a pseudo-package "C". The
Go code can then refer to types such as C.size_t, variables such as C.stdout,
or functions such as C.putchar.” (Go.dev, 2024, p. 1)
“These may then be referred to from Go code as though they were defined in
the package "C".” (Go.dev, 2024, p. 2)
“For security reasons, only a limited set of flags are allowed, notably -D, -
U, -I, and -l. To allow additional flags, set CGO_CFLAGS_ALLOW to a
regular expression matching the new flags.” (Go.dev, 2024, p. 2). 2024. url:
https://pkg.go.dev/cmd/cgo (visited on 04/21/2024).

[god24] go.dev. Frequently Asked Questions (FAQ) - The Go Programming Language.
FAQ. 2024. url: https://go.dev/doc/faq (visited on 04/22/2024).

[Gou] Jake Goulding. Basics - The Rust FFI Omnibus. url: https://jakegoulding.
com/rust-ffi-omnibus/basics/ (visited on 04/21/2024).

[KSB17] Gregory M. Kurtzer, Vanessa Sochat, and Michael W. Bauer. “Singularity:
Scientific Containers for Mobility of Compute”. In: PLOS ONE 12.5 (May 11,
2017). Ed. by Attila Gursoy, e0177459. issn: 1932-6203. doi: 10 . 1371 /
journal.pone.0177459. url: https://dx.plos.org/10.1371/journal.
pone.0177459 (visited on 04/21/2024).

[Kub] Kubernetes. Kubernetes Documentation. Kubernetes. url: https://kubernetes.
io/docs/home/ (visited on 07/05/2023).

[LG22] Peini Liu and Jordi Guitart. Fine-Grained Scheduling for Containerized HPC
Workloads in Kubernetes Clusters.
“However, scheduling policies that consider the performance nuances of con-
tainerized High Performance Computing (HPC) workloads have not been well-
explored yet” (Liu and Guitart, 2022, p. 1)
“Our results show that our fine-grained scheduling policies outperform base-
line and baseline with CPU/memory affinity enabled policies, reducing the
overall response time by 35% and 19%, respectively, and also improving the
makespan by 34% and 11%, respectively. They also provide better usability
and flexibility to specify HPC workloads than other comparable HPC Cloud
frameworks, while providing better scheduling efficiency thanks to their multi-
layered approach.” (Liu and Guitart, 2022, p. 1)

Section 9 Valerius Mattfeld 13

https://doi.org/10.3390/a15070234
https://www.mdpi.com/1999-4893/15/7/234
https://www.mdpi.com/1999-4893/15/7/234
https://github.com/fission/fission
https://go.dev/ref/mem
https://go.dev/solutions/cloud
https://pkg.go.dev/cmd/cgo
https://go.dev/doc/faq
https://jakegoulding.com/rust-ffi-omnibus/basics/
https://jakegoulding.com/rust-ffi-omnibus/basics/
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1371/journal.pone.0177459
https://dx.plos.org/10.1371/journal.pone.0177459
https://dx.plos.org/10.1371/journal.pone.0177459
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/

Go in High Performance Computing

“HPC workloads are considered as batch jobs in Kubernetes.” (Liu and Gui-
tart, 2022, p. 2)
“An HPC workload is specified as a launcher and one or multiple workers.
Each launcher or worker is a container that can be executed as a Pod and run
in parallel in a Kubernetes cluster. However, the original Kubernetes batch
jobs are not designed for supporting the HPC applications efficiently.” (Liu
and Guitart, 2022, p. 2)
“Also, the Kubernetes default scheduler does not schedule jobs but individual
Pods.” (Liu and Guitart, 2022, p. 2)
“Kubeflow MPI operator [10] provides a better specification for MPI jobs
which defines an MPI ’Launcher’ and an MPI ’Worker’. In most cases, all the
MPI worker processes will be launched in this ’Worker’ container.” (Liu and
Guitart, 2022, p. 2)
“Our results show that the proposed fine-grained policies can reduce the re-
sponse time of HPC workloads up to 35%, as well as improve the makespan
up to 34%. Although our benchmarks are small-scaled MPI jobs that fit in a
single node,” (Liu and Guitart, 2022, p. 10)
“e.g. for network applications, one would probably use coarse-grained granular-
ity within each node to exploit fast shared-memory communication, whereas
CPU-bound applications could use fine-grained granularity to exploit affinity.”
(Liu and Guitart, 2022, p. 10)
“In the future, we will enhance our fine-grained policies for the scheduling of
mixed HPC-AI workloads on Kubernetes, and to consider other application
profiles such as I/O applications. Moreover, we will evaluate them in larger-
scale scenarios.” (Liu and Guitart, 2022, p. 10). Nov. 21, 2022. doi: 10.48550/
arXiv.2211.11487. arXiv: 2211.11487 [cs]. url: http://arxiv.org/abs/
2211.11487 (visited on 07/05/2023). preprint.

[Loh10] Eugene Loh. “The Ideal HPC Programming Language: Maybe It’s Fortran.
Or Maybe It Just Doesn’t Matter.” In: Queue 8.6 (June 1, 2010).
“Fortran, which is arguably still the primary language in HPC—proved re-
markably adequate. Programming challenges stem mostly from other factors.”
(Loh, 2010, p. 1)
“We rewrote a number of HPC benchmarks and applications using modern
Fortran in a way that took into account the human costs of software devel-
opment: programmability and associated characteristics such as readability,
verifiability, and maintainability.” (Loh, 2010, p. 2)
“Most of all, the HPC community could well benefit from a community-wide
effort to emphasize programmability and human productivity.” (Loh, 2010, p.
9), pp. 30–38. issn: 1542-7730. doi: 10.1145/1810226.1820518. url: https:
//dl.acm.org/doi/10.1145/1810226.1820518 (visited on 04/20/2024).

[Mer+15] Juan-J. Merelo et al. There Is No Fast Lunch: An Examination of the Running
Speed of Evolutionary Algorithms in Several Languages. Nov. 3, 2015. doi:
10.48550/arXiv.1511.01088. arXiv: 1511.01088 [cs]. url: http://
arxiv.org/abs/1511.01088 (visited on 04/20/2024). preprint.

[mpi] mpich.org. MPICH | High-Performance Portable MPI. url: https://www.
mpich.org/ (visited on 04/20/2024).

Section 9 Valerius Mattfeld 14

https://doi.org/10.48550/arXiv.2211.11487
https://doi.org/10.48550/arXiv.2211.11487
https://arxiv.org/abs/2211.11487
http://arxiv.org/abs/2211.11487
http://arxiv.org/abs/2211.11487
https://doi.org/10.1145/1810226.1820518
https://dl.acm.org/doi/10.1145/1810226.1820518
https://dl.acm.org/doi/10.1145/1810226.1820518
https://doi.org/10.48550/arXiv.1511.01088
https://arxiv.org/abs/1511.01088
http://arxiv.org/abs/1511.01088
http://arxiv.org/abs/1511.01088
https://www.mpich.org/
https://www.mpich.org/

Go in High Performance Computing

[Oak+18] Edward Oakes et al. “SOCK: Rapid Task Provisioning with Serverless-Optimized
Containers”. In: USENIX Annual Technical Conference. [TLDR] This work an-
alyzes Linux container primitives, identifying scalability bottlenecks related
to storage and network isolation, and implements SOCK, a container sys-
tem optimized for serverless workloads. July 11, 2018. url: https://www.
semanticscholar.org/paper/SOCK%3A-Rapid-Task-Provisioning-with-
Containers- Oakes- Yang /8352e3ba20cb0fd48e2514bc1948e68108943e39
(visited on 04/21/2024).

[ope] openmpi.org. Open MPI: Open Source High Performance Computing. url:
https://www.open-mpi.org/ (visited on 04/20/2024).

[ope23] openfaas. Openfaas/Faas: OpenFaaS - Serverless Functions Made Simple. 2023.
url: https://github.com/openfaas/faas (visited on 05/31/2023).

[PA22] Davit Petrosyan and Hrachya Astsatryan. “Serverless High-Performance Com-
puting over Cloud”. In: Cybernetics and Information Technologies 22.3 (Sept. 1,
2022).
“The article aims to present an architecture that enables HPC workloads to
be serverless over the cloud (Shoc), one of the most critical cloud capabilities
for HPC workloads.” (Petrosyan and Astsatryan, 2022, p. 82)
“On one hand, Shoc utilizes the abstraction power of container technologies
like Singularity and Docker, combined with the scheduling and resource man-
agement capabilities of Kubernetes.” (Petrosyan and Astsatryan, 2022, p. 82)
“On the other hand, Shoc allows running any CPU-intensive and data-intensive
workloads in the cloud without needing to manage HPC infrastructure, com-
plex software, and hardware environment deployments” (Petrosyan and Ast-
satryan, 2022, p. 82)
“Shoc architecture has overcome the limitations of scheduling serverless HPC
workloads on the clouds.” (Petrosyan and Astsatryan, 2022, p. 85)
“Kubernetes has rich resource management and workload scheduling func-
tionality. Policy-based scheduling and declarative resource requirements allow
building a serverless HPC solution to run HPC workloads over Kubernetes. On
the other hand, Kubernetes supports several container runtime environments
other than Docker. Therefore, it could be easily implemented to orchestrate
Singularity-based containers, more common in the HPC world.” (Petrosyan
and Astsatryan, 2022, p. 86)
“4.2. Containerization The Shoc architecture can use any technology compat-
ible with Kubernetes. However, for practical reasons, Shoc uses Docker and
Singularity as the primary container runtimes for the Shoc architecture. One
of the most critical advantages of Shoc architecture is that the end-user is
unaware of any containers, pods, and other infrastructure-level complexities.
To achieve this, Shoc provides back-end services that containerize target pro-
grams. In this case, the end-user submits an executable to the Shoc system,
and a particular back-end service containerizes the given executable along
with its dependencies. This level of abstraction allows containerization of any
workload with the Container runtime of choice. Thus, whether it is an Open-
MPI executable with dependencies or a Java-based Spark application, it gets
containerized the same way. The container image of the workload is then
pushed into a uniqu” (Petrosyan and Astsatryan, 2022, p. 87)

Section 9 Valerius Mattfeld 15

https://www.semanticscholar.org/paper/SOCK%3A-Rapid-Task-Provisioning-with-Containers-Oakes-Yang/8352e3ba20cb0fd48e2514bc1948e68108943e39
https://www.semanticscholar.org/paper/SOCK%3A-Rapid-Task-Provisioning-with-Containers-Oakes-Yang/8352e3ba20cb0fd48e2514bc1948e68108943e39
https://www.semanticscholar.org/paper/SOCK%3A-Rapid-Task-Provisioning-with-Containers-Oakes-Yang/8352e3ba20cb0fd48e2514bc1948e68108943e39
https://www.open-mpi.org/
https://github.com/openfaas/faas

Go in High Performance Computing

“88 registry for further reference. This containerization method is used as
a foundation of well-known serverless systems (function-as-a-service, etc.).”
(Petrosyan and Astsatryan, 2022, p. 88)
“The kube-autoscaler feature allows the Kubernetes cluster to instantiate and
join a node on demand, enabling Shoc to support massive scale infrastructures.
This way, if Shoc is given several Kubernetes cluster references managed by
various Cloud providers (public or private), it will be ready to scale up or down
based on the actual resource usage. This makes Shoc a serverless system, as
underlying resources are allocated and de-allocated without the involvement
of the Shoc system or a human operation.” (Petrosyan and Astsatryan, 2022,
p. 88)
“The article presents the architecture of the Shoc system. Shoc architecture
aims to advance seamless cloud infrastructure usage for running HPC work-
loads by benefiting from modern cloud technologies. It adds serverless ex-
perience to the enduser and takes out the complexity of deploying HPC in-
frastructures. The proposed methodology expands existing high-performance
computing technologies with containerization enabling seamless scaling, de-
ployment, and clustering capabilities.” (Petrosyan and Astsatryan, 2022, p.
91), pp. 82–92. doi: 10.2478/cait-2022-0029. url: https://sciendo.
com/article/10.2478/cait-2022-0029 (visited on 04/21/2024).

[Par+16] Fawaz Paraiso et al. “Model-Driven Management of Docker Containers”. In:
2016 IEEE 9th International Conference on Cloud Computing (CLOUD) (2016),
pp. 718–725. url: https://api.semanticscholar.org/CorpusID:17464333.

[Sch+21] Johann Schleier-Smith et al. “What Serverless Computing Is and Should Be-
come: The next Phase of Cloud Computing”. In: Communications of the ACM
64.5 (Apr. 26, 2021), pp. 76–84. issn: 0001-0782. doi: 10.1145/3406011. url:
https://dl.acm.org/doi/10.1145/3406011 (visited on 04/21/2024).

[Vir10] Patrick Viry. Java for HPC (High-Performance Computing).
“"HPC developers and users usually want to use Java in their projects" [...]
Indeed, Java has many advantages over traditional HPC languages:

• faster development
• higher code reliability
• portability
• adaptative run-time optimization” (Viry, 2010, p. 2)

“Since the language is cleaner, it is easier for developers to concentrate on per-
formance optimization (rather than, say, chasing memory-allocation bugs):”
(Viry, 2010, p. 2)
“"In Mare Nostrum the Java version runs about four times faster than the C
version [...]. Obviously, an optimisation of the C code should make it much
more efficient, to at least the level of the Java code. However, this shows
how the same developer did a quicker and better job in Java (a language
that, unlike C, he was unfamiliar with)" [1].” (Viry, 2010, p. 2). The dress of
thought. Sept. 3, 2010. url: https://ateji.blogspot.com/2010/09/java-
for-high-performance-computing.html (visited on 04/20/2024).

[Weg23] Johann Weging. Go-Mpi. Feb. 5, 2023. url: https://github.com/yoo/go-
mpi (visited on 07/06/2023).

Section Valerius Mattfeld 16

https://doi.org/10.2478/cait-2022-0029
https://sciendo.com/article/10.2478/cait-2022-0029
https://sciendo.com/article/10.2478/cait-2022-0029
https://api.semanticscholar.org/CorpusID:17464333
https://doi.org/10.1145/3406011
https://dl.acm.org/doi/10.1145/3406011
https://ateji.blogspot.com/2010/09/java-for-high-performance-computing.html
https://ateji.blogspot.com/2010/09/java-for-high-performance-computing.html
https://github.com/yoo/go-mpi
https://github.com/yoo/go-mpi

Go in High Performance Computing

A Code samples

Section A Valerius Mattfeld A1

	Contents
	List of Tables
	List of Figures
	List of Listings
	List of Abbreviations
	Introduction
	Background and Motivation
	Benefits of using Go in Cloud Environments
	The Go Programming Language
	Use-Cases
	Scalability and Cost-Effectiveness

	Go in Container Virtualization
	Docker
	Kubernetes

	Usage of Go in HPC
	Choosing a programming language for HPC
	Go as a programming language for HPC

	Go Libraries in HPC
	MPI Library Wrappers
	Garbage Collection and Shared Memory in Go for HPC

	Serverless Functions in HPC with Go
	Serverless functions
	Functions-as-a-Service Frameworks
	Serverless-Functions in HPC

	Discussion
	Conclusion
	References
	Code samples

